Sr. No.	Subject	Code	Scheme L-T-P	Credits (Min.)	Notional hours of Learning (Approx.)
	First Semester (1 st year of UG)		I		T
1	Introduction to Computer Science	Al101	3-1-0	4	70
2	Introduction to Programming	AI103	3-0-2	4	85
3	English and Professional Communication	HS110	3-1-0	4	70
4	Basic Electrical and Electronics Engineering	AI105	3-0-2	4	85
5	Fundamentals of Engineering Mathematics	MA105	3-1-0	4	70
			Total	20	380
6	Vocational Training/Professional Experience (Optional) (Mandatory for Exit)	AIV01/ AIP01	0-0-10	5	200 (20x10)
	Second Semester (1 st year of UG)				
1	Data Structures	AI102	3-1-2	5	100
2	Object Oriented Programming	AI106	3-0-2	4	85
3	Energy and Environmental Engineering	EG110	3-0-2	4	85
4	Linear Algebra and Statistics	MA106	3-1-0	4	70
5	Digital Electronics and Logic Design	EC106	3-0-2	4	85
6	Indian Value System and Social Consciousness	HS120	2-0-0	2	35
			Total	23	460
7	Vocational Training/ Professional Experience (Optional) (Mandatory for Exit)	AIV02/ AIP02	0-0-10	5	200 (20x10)
	Third Semester (2 nd year of UG)				
1	Computer Organization	AI201	3-1-0	4	70
2	Database Management Systems	AI203	3-0-2	4	85
3	Design and Analysis of Algorithms	AI205	3-1-0	4	70
4	Discrete Mathematics	MA221	3-1-0	4	70
5	Signal and Systems	EC203	3-1-0	4	85
			Total	20	380
	Fourth Semester (2 nd year of UG)				
1	Artificial Intelligence	AI202	3-0-2	4	85
2	Operating Systems	Al204	3-0-2	4	85
3	Automata and Formal Languages	Al206	3-1-0	4	70
4	Computer Networks	AI208	3-0-2	4	85
5	Microprocessor and Interfacing Techniques	Al232	3-0-2	4	85
			Total	20	410
6	Minor/ Honor (M/H#1)	Al2AA	3-X-X	3/4	55/70/85
7	Vocational Training/Professional Experience	AIV04/	0-0-10	5	200
	(Optional) (Mandatory for Exit)	AIP04			(20x10)
	Fifth Semester (3 rd year of UG)				
1	Machine Learning	Al301	3-0-2	4	85

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

2	Data Science	Al303	3-0-2	4	85
3	Information Security and Cryptography	Al331	3-0-2	4	85
	(Optional Core)				
4	Elective	AI3AA	3-X-X	3/4	55/70/85
5	Elective (Specialization#1)	AI3BB	3-X-X	3/4	55/70/85
			Total	18-20	365-425
6	Minor/ Honor (M/H#2)	AI3CC	3-X-X	4	70/85
	Sixth Semester (3 rd year of UG)				
1	Deep Learning	Al302	3-0-2	4	85
2	Cloud Computing	Al304	3-0-2	4	85
3	Reinforcement Learning	Al332	3-0-2	4	85
4	Elective	AI3DD	3-X-X	3/4	55/70/85
5	Elective (Specialization#2)	AI3EE	3-X-X	3/4	55/70/85
			Total	18-20	365-425
6	Minor/ Honor (M/H#3)	AI3FF	3-X-X	4	70/85
7	Vocational Training/ Professional Experience	AIV06/	0-0-10	5	200
	(Optional) (Mandatory for Exit)	AIP06			(20x10)
	Seventh Semester (4 th year of UG)				
1	Intelligent Multi agent and Expert Systems	Al401	3-0-2	4	85
2	Elective	AI4AA	3-X-X	3/4	55/70/85
3	Elective	AI4BB	3-X-X	3/4	55/70/85
4	Elective(Specialization#3)	AI4CC	3-X-X	3/4	55/70/85
5	Elective(Specialization#4)	AI4DD	3-X-X	3/4	55/70/85
			Total	16-20	305-425
6	Minor/ Honor(M/H#4)	AI4EE	3-X-X	4	70/85
	Eighth Semester (4 th year of UG)				
1	Industrial Internship/ Professional Experience	AIP08	0-0-40	20	800
	(Mandatory)				(20x40)
			Total	20	800

Sr.	Optional Core	Code	Scheme
No.			L-T-P
1	Object Oriented Programming	Al231	3-0-2
2	Micro processor and Interfacing Techniques	AI232	3-0-2
3	Information Security and Cryptography	Al331	3-0-2
4	Reinforcement Learning	Al332	3-0-2

Sr. No.	Elective	Code	Scheme L-T-P
1.	Probabilistic Graphical Model	AIXXX	3-1-0
2.	IoT and Edge Computing	AIXXX	3-0-2
3.	Computer Graphics	AIXXX	3-0-2
4.	System Software	AIXXX	3-0-2

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

5.	Information Retrieval	AIXXX	3-0-2
6.	Cyber Physical Systems	AIXXX	3-0-2
7.	Optimization Techniques	AIXXX	3-1-0
8.	Big data analytics and Large-Scale Computing	AIXXX	3-0-2
9.	Computational Intelligence	AIXXX	3-0-2
10.	Human Computer Interaction	AIXXX	3-0-2
11.	Multimedia System & Applications	AIXXX	3-0-2
12.	Unmanned Aerial Vehicles Information System	AIXXX	3-0-2
13.	Natural Language Processing	AIXXX	3-0-2
14.	Image Processing and Computer vision	AIXXX	3-0-2
15.	High Performance Computing	AIXXX	3-0-2
16.	Social Network Analysis	AIXXX	3-0-2
17.	Digital Forensics	AIXXX	3-0-2
18.	Unmanned Aerial Vehicles Forensics	AIXXX	3-0-2
19.	Speech and Audio Processing	AIXXX	3-0-2
20.	Data Visualization	AIXXX	3-0-2
21.	Machine Learning for Security	AIXXX	3-0-2
22.	Service Oriented Architectures	AIXXX	3-0-2
23.	Game Theory	AIXXX	3-1-0
24.	Al for Bio-Medical Image Processing	AIXXX	3-0-2
25.	Surveillance Video Analysis	AIXXX	3-0-2
26.	Adversarial Machine Learning	AIXXX	3-0-2
27.	Secure Cloud Computing	AIXXX	3-0-2
28.	IoT & Sensor Data Analytics	AIXXX	3-0-2
29.	Robotics and its Applications	AIXXX	3-0-2
30.	Advanced Database Management System	AIXXX	3-0-2
31.	Innovation, Incubation and Entrepreneurship	AIXXX	3-0-2
32.	Research Methodology	AIXXX	3-1-0
33.	Bioinformatics	AIXXX	3-0-2
34.	Data Mining	AIXXX	3-0-2
35.	Drone and Automation Systems	AIXXX	3-0-2
36.	Animation and Rendering	AIXXX	3-0-2
37.	System Analysis and Simulation	AIXXX	3-0-2
38.	Applied Machine Learning	AIXXX	3-0-2
39.	Introduction to Quantum Computing	AIXXX	3-1-0
40.	Responsible AI	AIXXX	3-1-0
41.	Big Data Analysis and Visualization	AIXXX	3-0-2
42.	Reinforcement Learning	AIXXX	3-0-0
43.	Introduction to Large Language Model	AIXXX	3-0-0
44.	Drone and Automation Systems	AIXXX	3-0-0
45.	Internet of Things and Edge Computing	AIXXX	3-0-0
46.	Block Chain and Its Applications	AIXXX	3-0-0
47.	Agentic Al	AIXXX	3-0-0

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech. I (AI) Semester – I INTRODUCTION TO COMPUTER SCIENCE (CORE-1)	Scheme	L	Т	Р	Credit
Al101		3	1	0	04

1.	Course Outcomes (COs): At the end of the course, students will be able to
CO1	Acquire knowledge about computers and computational problem solving.
CO2	Design the solutions of computational problems using iterative and recursive methods using flowcharts and pseudo-codes.
CO3	Solve computational problems in different number systems.
CO4	Analyse the importance of different types of memory and evaluate the impact of different algorithms on memory.
CO5	Experiment with different operating systems such as Windows and Linux and write scripts to automate repetitive tasks.

2.	Syllabus		
	INTRODUCTION TO COMPUTER AND ITS ARCHITECTURE	(04 Hours)	
	Introduction and Characteristics, Computer Architecture, Generations, Cla Applications, Central Processing Unit and Memory, Communication between val Processor Speed, Multiprocessor System, Peripheral Buses, Motherboard Demonstra		
	NUMBER SYSTEMS	(06 Hours)	
	Introduction and type of Number System, Conversion between Number System, Arithme Operations in different Number System, Signed and Unsigned Number System.		
	COMPUTATIONAL PROBLEM SOLVING	(08 Hours)	
	Program Development Cycle, Pseudocode, Flowchart, Representing Information as Bits, Bina System, Storing Integers, Storing Fractions, Examples of Computational Problems, Iterative at Recursive Approaches to Solve Computational Problems, Easy and Hard Computational Problems		
	MEMORY AND VARIOUS INPUT AND OUTPUT DEVICES	(04 Hours)	
	Introduction to Memory, Input and Output Devices, Memory Hierarchy, Primary Memits Types, Secondary Memory, Classification of Secondary Memory, Various Secondary Devices and their Functioning.		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

INTRODUCTION TO SYSTEM SOFTWARES AND PROGRAMMING LANGUAGES	(03 Hours)
Classification of Computer Languages, Introduction of Operating System, Evolution Function of OS, Unix Commands, Evolution and Classification of programmin Feature and Selection of good Programming Language, Development of Program, A Flowchart, Program Testing and Debugging, Program Documentation and Characteristics of good Program.	g Language, Igorithm and
WINDOWS OPERATING SYSTEM AND ITS ENVIRONMENT	(03 Hours)
Introduction to GUI based OS, Configuration, Setup, Services, Network Configuration	on.
LINUX OPERATING SYSTEM AND ITS ENVIRONMENT	(06 Hours)
Introduction to Linux OS, Configuration, Setup, Commands – Navigating File Permissions (R/W/X), Access control and super user (sudo) privileges, Scripting Shell and Scripting, Network Configuration.	-
DEBUGGING TOOLS AND COMPILER OPTION	(03 Hours)
Different Debugging tools, Commands, Memory dump, Register and Variab Instruction and Function level debugging, Compiler Options, Profile Generation.	le Tracking,
DATA COMMUNICATION, COMPUTER NETWORK AND INTERNET BASICS	(04 Hours)
Data Communication and Transmission media, Multiplexing and Switching, Computant Network Topology, Communication Protocols and Network Devices, Evolution Internet Term, Getting Connected to Internet and Internet Application, Email and Searching the Web, Languages of Internet, Internet and Viruses.	on and Basic
SYSTEM AND NETWORK SECURITY BASICS	(04 Hours)
Security Services, Security Attacks, and Security Mechanisms, Authentication Strengths and Entropy, Access Control Mechanisms, Read/Write/Execute Permissio User/Administrator Privileges, Introduction of HTTPS and Digital Certificates	•
Tutorials will be based on the coverage of the above topics separately.	(15 Hours)
(Total Contact Time: 45 Hours + 15 Hours	s = 60 Hours)

3.	Tutorials
1	Number System
2	Problem Solving using Algorithms
3	Problem Solving using Flowcharts
4	Linux Commands

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

5	Bash Shell Scripting

4.	Books Recommended
1.	Introduction to Computer Science", Fourth Impression, Pearson Education, ITL Education Solutions Limited, 2009.
2.	Nell Dale and John Lewis, "Computer Science Illuminated", Jones and Bartlett Publishers.
3.	Robert Sedgewick and Kevin Wayne, "Computer Science", Addison-Wesley.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech. I (AI) Semester – I INTRODUCTION TO PROGRAMMING (CORE-2)	Scheme	L	Т	Р	Credit
Al103		3	0	2	04

1.	Course Outcomes (COs): At the end of the course, students will be able to
CO1	Acquire knowledge about fundamentals of C programming language.
CO2	Apply the knowledge of C Programming to solve computational problems.
CO3	Debug, test, and analyse C Programs to find and correct errors and improve the solutions.
CO4	Learn various programming techniques such as iteration and recursion, and apply them to solve computational problems.
CO5	Learn and apply the advanced programming concepts such as modularization, memory management, and file handling to improve the efficiency of computational problems.

2.	Syllabus	
	OVERVIEW OF C PROGRAMMING LANGUAGE	(02 Hours)
	History of C, Importance of C, Basic Structure of a C Program, How to Compile a C Program, Sample Programs.	rogram, How
	CONSTANTS, VARIABLES, AND DATA TYPES	(03 Hours)
	Character Set in C, Keywords, Identifiers, Constants, Strings, Operators, Special Symbols Variables, Data Types: Primary Data Types and User Defined Data Types, Declaration of Variables, Assigning Values to Variables, Initialization of Variables, Defining Symbolic Constants Declaring Variables as Constants.	
	OPERATORS AND EXPRESSIONS	(03 Hours)
	Operators: Arithmetic, Relational, Logical, Assignment, Increment and Decrement, Bitwise, Comma Operator, sizeof Operator, Operators used in Pointers and Arithmetic Expressions, How C programming Evaluates Arithmetic Expressions, Pr Arithmetic Operators and Associativity Rule, Type Conversion: Implicit and Explicit	Structures, eccedence of
	LIBRARY FUNCTIONS: INPUT, OUTPUT, MATHEMATICS, DATE AND TIME	(03 Hours)

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

Reading Character from Keyboard, Printing Character on Screen, Reading String f Printing String on Screen, Formatting input and Output, difftime, clock, time, M abs, fmod, reminder, log, log2, pow, sqrt, ceil, floor.	•
DECISION MAKING AND BRANCHING	(04 Hours)
Decision Making in C Programming, If Statement, Nested If Statement, Else If Statement, Conditional Operator Statement, Goto Statement, Decision Makin Operators, Sample Programs.	
DECISION MAKING AND LOOPING	(05 Hours)
Introduction to Loops, While Loop, Do While Loop, For Loop, Break Statement, Go Continue Statement, Sample Programs.	oto Statement,
ARRAYS AND CHARACTER ARRAYS	(05 Hours)
Introduction to Arrays, One Dimensional Array, Declaration and Initializ Dimensional Array, Two Dimensional Array, Declaration and Initialization of Tw Array, Multi-Dimensional Array, Sample Programs, Declaration and Initialization Arithmetic Operations on Characters, String Functions: Strlen(), Strcat(), StrCat(), etc.	o Dimensional on of Strings,
FUNCTIONS	(05 Hours)
Function Declaration, Function Definition, Function Calls, Functions with No Arguments and No Return Values, Functions with Arguments and Return Values, Functions with Arguments and Return Values, Recursive Fun Arrays to Functions, Call by Value, Call by Reference, Scope and Lifetime of Functional, Static, and Register Declaration.	No Arguments ctions, Passing
STRUCTURES AND UNIONS	(04 Hours)
Structure Template, Structure Variable Declaration and Initialization, Structure Assignment, Accessing Structure Variables, Arrays as Structure, Arrays with Structure Members to Functions, Unions, Difference Between Structures and Unions	ctures, Passing
POINTERS AND MEMORY MANAGEMENT	(05 Hours)
Declaration and Initialization of Pointers, Accessing Memory through Poin Memory Allocation, Memory Management Functions: Malloc, Calloc, and Free, to Access Dynamically Allocated Memory Locations, Pointers with Arrays, Use Return Multiple Values From Functions, Sample Program: Linked List.	Using Pointers

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

FILE MANAGEMENT	(04 Hours)
Opening and Closing a File, Modes in File Opening: Read, Write and Append, Inpoperations on Files, File Handling Functions such as fseek(), ftell(), rewind().	ut and Output
PREPROCESSOR DIRECTIVES	(02 Hours)
Macro Substitution, Importing a File, Compiler Control Directives.	
Practicals will be based on the coverage of the above topics separately	(30 Hours)
(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)	

3.	Practicals
1	C Programming – How to write a program, compile a program, and execute a program
2	Read the input from a keyboard and write the output to computer screen
3	Variable declaration, initialization, and assignment, Constant declaration, Experiments with different data types
4	Experiments with different C Operators, Analysing the impact of precedence and associativity rules while evaluating expressions in C
5	Experiments with standard library functions related to math library, time library, standard input and output library etc.
6	Experiments with If, Else If, Switch, Goto statements
7	Experiments with While, DoWhile, For Loops, and analysing the impact of Break, Goto and Continue statements on C Loops
8	Experiments with Arrays and Character Arrays
9	Experiments with Different Functions having Arguments/No Arguments and Return Values/No Return Values, Scope and Lifetime of Functions, and Understanding Local, Global, Static, and Register Declaration
10	Experiments with Structures and Unions, Analysing the difference between the structure and union with respect to memory
11	Experiments with Pointers with respect to Accessing Memory from the Stack and Heap Section of the RAM (i.e., Experiments with Static and Dynamic Memory Management)
12	Opening, Closing the Files using a C program, and accessing the files to get the input from the file and store the output to the file.
13	Experiments with pre-processor directives.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

4.	Books Recommended
1.	E. Balagurusamy, "Programming in ANSI C", Mc-Graw Hill.
2.	Brian W. Kernighan / Dennis Ritchie, "The C Programming Language", Pearson.
3.	Yashavant Kanetkar, "Let us C", BPB Publications.
4.	Harbison and Steele, "C: A Reference Manual"

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech. I (AI) Semester – I ENGLISH AND PROFESSIONAL COMMUNICATION	Scheme	L	Т	Р	Credit
HS110		3	1	0	04

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	Show enhanced reception towards the use of English language.
CO2	Choose and employ appropriate words for professional communication.
CO3	Develop sentences and text in English coherently and formally.
CO4	Demonstrate overall improvement in oral communication.
CO5	Analyze and infer from written and oral messages.

2.	Syllabus	
	COMMUNICATION	(05 Hours)
	Introduction to Communication, Different forms of Communication, Barriers to Co and some remedies, Non-Verbal Communication – Types, Non-Verbal Communication – Types, Non-Verbal Communication	
	VOCABULARY AND USAGE OF WORDS	(05 Hours)
	Common Errors, Synonyms, Antonyms, Homophones, and Homonyms; One Word Misappropriations; Indianisms; Redundant Words.	Substitution;
	LANGUAGE THROUGH LITERATURE	(09 Hours)
	Selected short stories, essays, and poems to discuss nuances of English language.	
	LISTENING AND READING SKILLS	(06 Hours)
	Types of listening, Modes of Listening-Active and Passive, Listening and note tale Practice and activities; Reading Comprehension (unseen passage-literary technical) Skimming and scanning, fact vs opinion, Comprehension practice	
	SPEAKING SKILLS	(10 Hours)
	Effective Speaking, JAM, Presentation Skills- types, preparation and practice. Interpreparation and mock interview; Group Discussion- types, preparation and practi	• • • •
	WRITING SKILLS	(10 Hours)
	Prerequisites of effective writing, Memo-types, Letter Writing- types, Email e Netiquette, Résumé-types, Report Writing and its types, Editing.	etiquette and

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Tutorials will be based on the coverage of the above topics separately.	(15 Hours)
(Total Contact Time: 45 Hours + 15 Hour	rs = 60 Hours)

3.	Tutorials
1	Letter and Resume
2	Group Discussion
3	Presentation Skills (Individual)
4	Role Play on Nonverbal communication
5	Group Presentation
6	Debate
7	Body language and intercultural communication
8	Listening Activities
9	Editing
10	Report Writing
11	Mock interviews
12	JAM

4.	Books Recommended
1	Kumar, Sanjay and Pushp, Lata. <i>Communication Skills</i> , 2 nd Edition, OUP, New Delhi, 2015.
2	Raman, Meenakshi & Sharma Sangeeta. <i>Technical Communication Principles and Practice</i> , 3 rd
	Edition, OUP, New Delhi, 2015.
3	Raymond V. Lesikar and Marie E Flatley. Basic Business Communication skills for Empowering
	the Internet generation. Tata McGraw Hill publishing company limited. New Delhi 2005.
4	Courtland L. Bovee, John V. Thill, and Mukesh Chaturvedi. "Business Communication Today."
	Ninth Edition. Pearson, 2009.
5	Mike Markel. "Practical Strategies for Technical Communication," Bedford/ St. Martin's Second
	Edition, 2016

ADDITIONAL REFERENCE BOOKS 1 Laura J. Gurak and John M. Lannon. "Strategies for Technical Communication in the Workplace," Pearson, 2013.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. I (AI) Semester – I BASIC OF ELECTRICAL AND ELECTRONICS ENGINEERING		L	T	Р	Credit
Al105	Scheme	3	0	2	04

1. <u>C</u>	1. Course Outcomes (COs):						
At the	At the end of the course, students will be able to						
CO1	Understand Basic Electrical Concepts – Explain circuit components, Ohm's law, Kirchhoff's laws, and						
	AC/DC circuit behavior.						
CO2 Analyze Circuits Using Network Theorems – Apply Thevenin's, Norton's, Superposition							
	theorems for circuit analysis.						
CO3	Analyze single-phase AC circuits and compute electrical quantities using RMS, average values, and power						
	factor concepts.						
CO4	Explain the working principles and characteristics of semiconductor devices and integrated circuits, and						
	apply them in designing basic analog electronic circuits including amplifiers, oscillators, multivibrators,						
	and timer-based applications.						
CO5	Use Electrical Measurement Instruments – Operate multimeters, oscilloscopes, and transducers for						
	measuring electrical parameters.						

2.	<u>Syllabus</u>				
	Basic Electrical Engineering Concepts, Laws and Principles	(07 Hours)			
	Introduction to Electrical Engineering, Current and Voltage sources, Resistance, Inductance, and Capacitance. Ohm's law, Kirchhoff's law, Work, Energy and Power, Electric Current, Resistance, Potential and Potential Difference, Electromagnetism and Electromagnetic Induction, Faraday's Laws Electromagnetic Induction, Magnetic Circuits, Self and Mutual Inductance, Series and parallel combination of R, L, C components. Voltage Divider and Current Divider Rules. Energy Stored in a Capacitor, Capacitor in Parallel and in Series, Sinusoidal voltage and current, Introduction to 3-phase systems, Electric Grids.				
	DC Networks, Network Theorems and Circuit Analysis				
	DC Network Terminologies, Voltage, and Current Sources, Series—Parallel Circuits, Kirchhoff's Current Law Kirchhoff's Voltage Law, Solution of Simultaneous Equations Using Cramer's Rule, Maxwell's Mesh Current Method, Nodal Voltage Method (Nodal Analysis), Network Theorems, Superposition Theorem, Theorem, Theorem, Norton's Theorem, Millman's Theorem, Maximum Power Transfer Theorem, Star—Delta Transformation, DC Transients- Transient in R—L Circuit, Transient in R—C Circuit. AC Fundamentals and Single-phase Circuits (08 Hours) Introduction, Generation of Alternating Voltage in an Elementary, Generator, Concept of Frequency, Cycle, Time Period, Instantaneous, Value, Average Value, and Maximum Value, Sinusoidal and Non-sinusoidal Wave Forms, Concept of Average Value and Root Mean Square (RMS) Value of an Alternating Quantity Analytical Method of Calculation of RMS Value, Average Value, and Form Factor, RMS and Average Values of Half-wave-rectified Alternating Quantity, Concept of Phase and Phase Difference, Single-phase AC Circuits, Behaviour of R, L, and C in AC Circuits, L—R Series Circuit, Apparent Power, Real Power, and				

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Reactive Power, Power in an AC Circuit, R-C Series Circuit, R-L-C Series Circuit, AC Parallel Circuits, AC Series—Parallel Circuits, Resonance in AC Circuits. **Semiconductor Devices** (09 Hours) Intrinsic and extrinsic semiconductors-, n-Type Semiconductor Material, P-Type Semiconductor Material, The p-n Junction, Biasing of p-n Junction, Semiconductor Diodes- Volt-ampere Characteristic of a Diode, An Ideal Diode, Diode Parameters and Diode Ratings, Zener Diode, Zener Diode as Voltage Regulator and Reference Voltage, Diode and Triode for Alternating Current (DIAC and TRIAC), Oscillators, Barkhausen criterion, sinusoidal and non-sinusoidal oscillators, Multivibrators: Astable, Monostable and Bistable Multivibrator, Transistors, Bipolar Junction Transistors, Working of a n-p-n and p-n-p Transistor, Transistor Configurations, Transistor as an Amplifier, Transistor As a Switch, Field Effect Transistors, Junction Field Effect Transistors (JEFT), Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). **Integrated Circuits** (07 Hours) Introduction to Monolithic and Hybrid ICs, Linear and Digital ICs, Amplifiers, Operational Amplifiers, Ideal OP-AMP, Application of OP-AMP as a Summing, Differential Amplifier, The 555 Timer Integrated Circuit, Three Operating Modes of IC 555, Pin configuration, Functional Block Diagram, Astable and Monostable application of IC 555, IC Voltage Regulators or Regulator ICs. **Principles of Electronic Measurements and Sensors** (06 Hours) Analog and Digital Instruments, Passive and Active Instruments, Static Characteristics of Instruments-Accuracy, Precision, Sensitivity and Resolution, Error, Threshold, and Loading Effect, Indicating-type Instruments- CRO (Cathode Ray Oscilloscope), Measurement of Power in DC and AC Circuits, Measurement of Energy, Sensor fundamentals and characteristics, Classification of Sensors- Resistive sensors, Capacitive sensors, Inductive sensors, Eddy current sensors, Linear variable differential transformers (LVDT).

3. Practicals:

- 1. Measure and confirm Ohm's Law, by measuring measuring voltage and current across a resistor while varying the DC supply voltage in steps, keeping the resistance constant, and plotting the V–I graph to observe the linear relationship.
- 2. Demonstrate Kirchhoff's Current Law (KCL) at a circuit junction and Kirchhoff's Voltage Law (KVL) in a closed loop by measuring currents and voltages in a resistive network and comparing them with theoretical values.
- 3. Set up electrical circuits with resistors, inductors, and capacitors in series and parallel combinations, and to measure and verify their equivalent resistance, inductance, and capacitance using appropriate instruments, confirming the theoretical values through practical experimentation.
- 4. To measure and analyze the power consumption in DC and AC circuits by experimentally determining voltage, current, and power factor, and verifying the results using theoretical calculations.
- 5. To observe the time-domain transient behavior of RL and RC circuits during charging and discharging phases.
- 6. Construct a linear electrical network and determine its Thevenin and Norton equivalent circuits by measuring open-circuit voltage and short-circuit current, and then validate the equivalence experimentally through practical observation and comparison with the original network behavior.
- 7. Investigate the load regulation behavior of a Zener diode by varying the load resistance at a constant input voltage, and measuring the output voltage, load current, and Zener current to determine the diode's voltage regulation capability.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Curriculum SVNIT Surat (58th Senate, 31 May 2023)

(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)

- 8. Examine the operation of a inverting and non-inverting amplifier configuration using an OP-AMP by changing input voltage and resistance values, and plotting the output response to validate the voltage gain relationship.
- 9. Analyze the output characteristics of a BJT in common emitter mode by varying the collector-emitter voltage (V_{CE}) for fixed base current (I_B) values and plotting the collector current (I_C) versus V_{CE} .
- 10. Connect, set up, and operate a Cathode Ray Oscilloscope (CRO) for observing sinusoidal waveforms, and to measure key waveform parameters such as amplitude, frequency, and time period by adjusting control settings and analyzing the displayed signal.

4. Books Recommended:

- 1. Milman, Halkias and Jit, Electronics Devices and Circuits, Tata McGraw-Hill, 2nd Edition
- 2. Sedra and Smith, Microelectronics Circuits, 6th edition, Oxford University Press.
- 3. Boylestad, Robert L., & Nashelsky, Louis Electronic Devices and Circuit Theory 11th Edition, Pearson Education, 2015. ISBN: 9781292060546
- 4. Kothari, D. P., & Nagrath, I. J. Basic Electrical Engineering 4th Edition, McGraw-Hill Education, 2019. ISBN: 9789353162344
- 5. Bhattacharya, S. K., & Chatterjee, S. Basic Electrical and Electronics Engineering, Pearson Education, 1st Edition, 2012. ISBN: 9788131733324

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech. I (AI) Semester – I FUNDAMENTALS OF ENGINEERING MATHEMATICS	Scheme	L	Т	Р	Credit
MA105		3	1	0	04

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	Accept the challenge to solve the problem with Mathematics.
CO2	Apply the knowledge of curve tracing to solve problem of engineering.
CO3	Identify, formulate and analyze complex engineering and affiliated field problems, specifically the differential equation concept in different engineering field.
CO4	Apply the knowledge of mathematics for model and analyze computational processes using analytic and combinatorial methods
CO5	Design solutions engineering industrial problems with effective mathematical skill.

2.	Syllabus				
	DIFFERENTIAL CALCULUS	(09 Hours)			
	Differentiation of Hyperbolic and Inverse Hyperbolic functions. Successive Differentiation, standard forms, Leibnitz's theorem and applications, Power series, Expansion of functions, Taylor's and Maclaurin's series. Curvature, Radius of curvature for Cartesian curve with application.				
	PARTIAL DIFFERENTIAL CALCULUS	(09 Hours)			
	Partial differentiation, Euler's theorem for homogeneous function, Modified Euler's theorem, Taylor's and Maclaurin's series for two variables. Tangent plane and Normal line, Error and Approximation, Jacobians with properties, Extreme values of function of two variables, Lagrange's methods of undetermined multipliers.				
	CURVE TRACING	(06 Hours)			
	Cartesian, polar and parametric form of standard curves.				
	ORDINARY DIFFERENTIAL EQUATION	(09 Hours)			
	Reorientation of differential equation first order first degree, exact differential equation and Integrating factors, first order higher degree odes, solvable for p, y and x, Solution of homogenous equations higher order, complementary functions, Particular Integrals, Linear differential equation with variable coefficient, Cauchy's Euler and Legendre's equation with variable coefficient, Method of variation of parameters.				
	APPLICATION OF DIFFERENTIAL EQUATION (Mathematical Modelling)	(06 Hours)			

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

, , , , , , , , , , , , , , , , , , , ,	lodelling of Realworld problems particularly Engineering System, Electrical network models CR), spread of epidemic (SI, SIS, SIR), Newton's Law of cooling, Compartment modelling, ending of beam models.		
SERIES SOLUTION AND SPECIAL FUNCTIONS	(06 Hours)		
Regular point, Singular point, series solution of ODE of 2nd order with varial special emphasis to differential equation of Legendre's and Bessel's for differential equations.			
Tutorials will be based on the coverage of the above topics separately. (15 Hour			
(Total Contact Time: 45 Hours + 15 Hours = 60 H			

3.	Tutorials
1	Problems on Array
2	Problems on Stack and Queue
3	Problems on Linked List
4	Problems on Trees
5	Problems on Graph

4.	Books Recommended
1	James Stewart, "Calculus", Thomson Asia, Singapore, 2003.
2	Kreyszing E., "Advanced Engineering Mathematics", John Wiley & Sons, Singapore, Int. Student Ed. 2015.
3	Wiley C. R., "Advanced Engineering Mathematics", McGraw Hill Inc., New York Ed. 1993.
4	F. B. Hilderband, "Methods of Applied mathematics", PHI, New Delhi, 1968
5	Ramana D. V., "Higher Engg. Mathematics", The McGraw-Hill Inc., New Delhi, 2007.

ADD	ADDITIONAL REFERENCE BOOKS					
1	Srimanta Pal, Subodh C. Bhunia, "Engineering Mathematics", Oxford University Press, New Delhi, 2015.					
2	Bali and Iyengar, "Engineering Mathematics", Laxmi Publications, New Delhi, 2004.					
3	Mary L. Boas, "Mathematical Methods in the Physical Sciences", John Wiley & Sons, Ed.2005					

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech. I (AI) Semester – II	Scheme	L	Т	Р	Credit
DATA STRUCTURES (CORE-3) AI102		3	1	2	05

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	recognize the need of different data structures and understand its characteristics.
CO2	apply different data structures for given problems.
CO3	design and analyse different data structures, sorting and searching techniques.
CO4	evaluate data structure operations theoretically and experimentally.
CO5	give solution for complex engineering problems.

2.	Syllabus		
	INTRODUCTION TO DATA STRUCTURES	(03 Hours)	
	Review of Concepts: Information and Meaning, Abstract Data Types, Internal Repr Primitive Data Structures, Arrays, Strings, Structures, Pointers.	resentation of	
	LINEAR LISTS	(06 Hours)	
	Sequential and Linked Representations of Linear Lists, Comparison of Insertion, Search Operations for Sequential and Linked Lists, Doubly Linked Lists, Circular Standard Template Library (STL), Applications of Lists.		
	STACKS	(06Hours)	
	Sequential and Linked Implementations, Representative Applications such a Expression Evaluation Viz., Infix, Prefix and Postfix, Parenthesis Matching, Tow Wire Routing in a Circuit, Finding Path in a Maze.		
	QUEUES	(06 Hours)	
	Operations of Queues, Circular Queue, Priority Queue, Dequeue, Applications of Queues Simulation of Time Sharing Operating Systems, Continuous Network Monitoring System Etc.		
	SORTING AND SEARCHING	(04 Hours)	

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

(Total Contact Time: 45 Hours + 15 Hours + 30 Hours = 90 Hour				
Tutorials will be based on the coverage of the above topics separately Practical will be based on the coverage of the above topics separately	(15 Hours)			
Topological Sort and Critical Paths.				
Applications, Adjacency Matrix and Linked Adjacency Chains, Graph Traversal, Bro Depth First Traversal, Spanning Trees, Shortest Path and Transitive Closure, Acti	eadth First and			
Definition, Terminology, Directed and Undirected Graphs, Properties, Connecti				
GRAPHS	(07 Hours)			
Height of B-Tree, 2-3 Trees, Sets and Multisets in STL.	te Operations,			
Issues in Large Dictionaries, M-Way Search Trees, BTrees, Search, Insert and Dele				
MULTIWAY TREES	(05 Hours)			
Huffman Coding, Tournament Trees, Bin Packing.	, , ,			
Priority Queues, Heap Implementation, Insertion and Deletion Operations, Heap	•			
Traversal Methods and Algorithms, Complete Binary Trees, General Trees, AVL Trees, Arithmetic Expression Evaluation, Infix-Prefix-Postfix Notation Converse	•			
Binary Trees and Their Properties, Terminology, Sequential and Linked Implementation				
TREES	(08 Hours)			
Search, Character Strings and Different String Operations.				
Hashing, Analysis of Collision Resolution Techniques, Searching Methods, Linear Search, Binary				
Sorting Methods, Bubble Sort, Selection Sort, Quick Sort, Radix Sort, Bucket Sort, Dictionaries,				

3.	Tutorials
1	Problems on Array
2	Problems on Stack and Queue
3	Problems on Linked List
4	Problems on Trees
5	Problems on Graph

4.	Practical

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

1	Implementation of Array and its applications
2	Implementation of Stack and its applications
3	Implementation of Queue and its applications
4	Implementation of Link List and its applications
5	Implementation of Trees and its applications
6	Implementation of Graph and its applications
7	Implementation of Hashing functions and collision resolution techniques
8	Mini Project (Implementation using above Data Structure)

5.	Books Recommended
1	Trembley & Sorenson: "An Introduction to Data Structures with Applications", 2/E, TMH, 1991.
2	Tanenbaum & Augenstein: "Data Structures using C and C++", 2/E, Pearson, 2007.
3	Horowitz and Sahani: "Fundamentals of Data Structures in C", 2/E, Silicon Press, 2007.
4	T. H. Cormen, C. E. Leiserson, R. L. Rivest: "Introduction to Algorithms",3/E, MIT Press, 2009.
5	Robert L. Kruse, C. L. Tondo and Brence Leung: "Data Structures and Program Design in C", 2/E, Pearson Education, 2001.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat Department of Artificial Intelligence B.Tech. Artificial Intelligence Department of Artificial Intelligence

B. Tech. I (AI) Semester-II OBJECT ORIENTED PROGRAMMING	L	Т	Р	Credit
Al106 Scheme	3	0	2	4

_	Course Outcomes (COs): At the end of the course, students will be able to						
CO1	Explain the core principles of object-oriented programming using Java and Python: objects, classes, inheritance, polymorphism, and encapsulation.						
CO2	Analyse the advantages and limitations of using object-oriented programming compared to procedural programming.						
CO3	Design and implement classes in Java to represent real-world entities and their functionalities.						
CO4	Apply the concepts of Multithreading and Exception handling to develop efficient and error-free codes.						
CO5	Design event-driven GUI and web-related applications that mimic real-world scenarios.						

2.	<u>Syllabus</u>		
	Elementary Programming	(06 Hours)	
	Introduction Java and Python, Hello World Program, Concepts of object-oriented program		
	Difference between OOP and other conventional programming – advantages and disad	vantages, Class,	
	Object, Identifiers, Variables, Operators, Data Types, Selections, Loops, Methods, Arrays.		
	Object Oriented Principles and Concepts	(08 Hours)	
	Basic concepts of Java and Python programming – advantages of Java and python, byte-co	de & JVM, PVM	
	working and Architecture, garbage collection, Memory Management – Heap/Stack, creation	of class, object,	
	constructor, finalize and, use of method overloading, this keyword, use of objects as param	eter & methods	
	returning objects, call by value & call by reference, static variables & methods, Superclass & subclasse		
	including multilevel hierarchy, process of constructor calling in inheritance, use of super and final keyword		
	with super() method, IIB, SIB, dynamic method dispatch, use of abstract classes & methods, interfaces		
	Create packages, import packages, and provide member access for packages. Auto W	idening, Explicit	
	narrowing, Auto up casting, Explicit down casting, Wrapper Classes, AutoBoxing, nested & ir	nner classes.	
	String, Exception, and Text I/O	(07Hours)	
	Basic string handling concepts in Java and Python- String, concept of mutable and immutable string		
	StringBuffer, StringBuilder, StringTokenizer, command line arguments, Exception handling basics, different		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

Department of Artificial Intelligence
types of exception classes, use of try & catch with throw, throws & finally, creation of user-defined
exception classes. Basics of I/O operations – keyboard input using Buffered Reader & Scanner classes,

exception classes. Basics of I/O operations – keyboard input using Buffered Reader &	Scanner classes,
Serialization, Externalization	
Multithreading	(07 Hours)
Basics of multithreading, main thread, thread life cycle, creation of multiple threads, thread synchronization, inter-thread communication, deadlocks for threads, suspend threads.	•
Collections Framework, and Design Patterns	(08Hours)
List, set, map, tuple, Lambda function in python. Basics of multithreading, main thread, creation of multiple threads, thread priorities, thread synchronization, inter-thread deadlocks for threads, suspending & resuming threads. Object class, toString, equals, hashcode, Collection API, Collections, Developing State Collections Class, List Stream, Set Stream, TreeSet, MapSteam, Generic Programming Overview, Factory design pattern, Singleton design pattern, MVC.	communication,
GUI and Database Programming	(09 Hours)
GUI Basics, Applet Programming, Swing vs AWT, Layout Manager, Event-Driver Program User Interfaces, Menus, Toolbars, Dialogs, JTable, JTree. Introduction JDBC, Type of Driv Statement, Prepared statements, JDBC connection with SQL server.	-
(Total Contact Time: 45 Hours +30 Hours)	ours = 75 Hours)

3. Practicals:

- 1. Student Management System in Java or Python
- 2. Banking System Simulation in Java or Python
- 3. File Operations with Exception Handling.
- 4. Producer-Consumer Problem with Multithreading
- 5. Employee Management System using Python OOPs concepts
- 6. Observer Pattern for Stock Market using Python OOPs concepts
- 7. Decorator Pattern for Pizza Ordering using Java
- 8. Strategy Pattern for Payment Processing using Python
- 9. Develop a basic student management system to add, delete, update, and view student records. Requirements:
 - Create a form with fields like Student ID, Name, Age, Gender, Department, etc.
 - Provide buttons for Add, Update, Delete, and View.
 - Use a JTable to display the list of students.
 - Use JDBC to connect to a MySQL database and perform CRUD operations.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence Department of Artificial Intelligence

Implement ActionListener for each button to handle respective actions.

4. Books Recommended:

- L. Y. Daniel Liang, Introduction to Jave Programming, Comprehensive Version, Person
- 2. Khalid A. Mughal, A Programmer's Guide to Java Scjp Certification: A Comprehensive Primer.
- 3. Dr. R. Nageswara Rao, Core JAVA: An Integrated Approach, Includes All Versions upto Java 8, Dreamtech Press
- 4. Python Programming, Using Problem Solving Approach, Reema Thareja, Oxford university Press
- 5. Herbert Schildt, Java 2 Complete Reference, TMH, 2010.
- 6. Python Object-Oriented Programming Fourth Edition, Steven F. Lott

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

	Scheme	L	Т	Р	Credit
ENERGY AND ENVIRONMENTAL ENGINEERING EG110		3	0	2	04

1.	Course Outcomes (COs):
	At the end of the course, students will be able to
CO1	Explain the components of ecosystems, various biogeochemical cycles and importance of different urban network services
CO2	Differentiate between various types of environmental pollution along with their impacts and regulatory standards
CO3	Examine various global environmental issues and their management
CO4	Discuss the fundamental principles of energy, including classification, conservation and related policy frameworks and regulations.
CO5	Get acquainted with the concept of energy systems and their components

2.	Syllabus	
	ENVIRONMENT AND ECOSYSTEMS	(10 Hours)
	Introduction: Concept of an ecosystem - structure and functions of ecosystem; Components ecosystem - producers, consumers, decomposers; Food chains, food webs, ecologic pyramids, energy flow in ecosystem; Bio-geochemical cycles, hydrologic cycle Components of environment and their relationship, impact of technology on environment environmental degradation, environmental planning of urban network services such as wat supply, sewerage, solid waste management; closed loop cycle, concepts of sustainability	
	ENVIRONMENTAL POLLUTION	(10 Hours)
	Water, air, soil, noise, thermal and radioactive, marine pollution - sources, effects and engineering control strategies; Centralized and decentralized treatment system, Drinking water quality and standards, ambient air and noise standards	
	GLOBAL ENVIRONMENTAL ISSUES AND ITS MANAGEMENT	(10 Hours)
	Engineering aspects of climate change, concept of carbon credit, CO ₂ sequestration, concepts of environmental impact assessment and environmental audit, life cycle assessment	
	BASICS OF ENERGY AND ITS CONSERVATION	(07 Hours)

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

and its characterization	Classification of energy sources, Global and national energy scenario, Fossil and alternate fuels and its characterization. General aspects of energy conservation and management; Energy conservation act, Energy policy of company; Need for energy standards and labelling; Energy building codes.	
INTRODUCTION TO EN	ERGY CONSERVATION SYSTEMS	(08 Hours)
normal rating specifica Refrigerator, Air-condit	Energy conversion systems: Working principle, Basic components, General functioning normal rating specifications of various energy conversion systems like Power plant, Pu Refrigerator, Air-conditioner, Internal combustion engine, Solar PV cell, Solar water heat system, Biogas plant. Wind turbine, Fuel cells.	
Practicals will be based	d on the coverage of the above topics separately.	(30 Hours)
	(Total Contact Time: 45 Hours + 30 Hours = 75 Hou	

3.	Practicals
1	Performance Test on a computerised single cylinder diesel engine
2	Performance Test on Three-cylinder petrol engine
3	Determination of COP of vapor compression refrigeration system
4	Study of General Motors Cruze Vehicle Automotive System
5	Study of MG Hector Vehicle Automotive Systems
6	Measurement of direct and diffused Solar radiation using pyranometer
7	Determination of I-V Characteristics of solar PV Panel
8	Study of electricity and or gas bill
9	Study of pollutants from diesel Engine
10	Study of pollutants from petrol Engine

4.	Books Recommended
1	Daniel B. Botkin & Edward AKeller, Environmental Sciences, John Wiley & Sons.
2	R. Rajagopalan, Environmental Studies, Oxford University Press.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

3	Benny Joseph, Environmental Studies, TMH Publishers.
4	Dr. Suresh K. Dhameja, Environmental Studies, S. K. Kataria & Sons, 2007.
5	U. K. Khare, Basics of Environmental Studies, Tata McGraw Hill, 2011.

ADD	DITIONAL REFERENCE BOOKS
1	C. S. Rao, Environmental Pollution Control Engineering, New Age International Publishers, 2018

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. I (AI) Semester – II	Scheme	L	Т	Р	Credit
LINEAR ALGEBRA AND STATISTICS MA106		3	1	0	04
MATOO		_	_		• •

1.	Course Outcomes (COs): At the end of the course, students will be able to
CO1	accept the challenge to solve the problem with statistics
CO2	apply the knowledge of Linear Algebra to solve problem of engineering.
CO3	identify, formulate and analyze complex engineering and affiliated field problems, specifically the Partial differential equation concept in different engineering field
CO4	apply the knowledge of vector calculus and analyze computational processes
CO5	design solutions to work on engineering industrial problems with effective mathematical skill.

2.	Syllabus		
	PROBABILITY THEORY AND RANDM PROCESS	(09 Hours)	
	Fundamentals of Probability Theory: - views of probability, Random variables and distributions, Marginal distribution, Conditional probability, Conditional independ Expectation and variance, Probability distributions Central limit theorem, Functions of ravariable, Sum of independent random variable, Correlation and regression, Random process, Stationary random process, Autocorrelation and cross correlation, Ergodic process, M process, Birth and death process, Poisson process, Markov chain, Chapman Kolmo, theory, Spectral analysis of random processes, power spectral density.		
	ESTIMATION AND STATISTICS Sampling theory, Population and sample, Statistical interference, Sampling distribution, Sample mean, Bias estimation, Unbiased estimator, Confidence interval, Point estimation and interval estimates, Statistical decision, Hypothesis testing, Statistical hypotheses, Null hypotheses, Significance test, Type I and types II errors, Level of significance, One tail and two tailed test, Chi square test, Maximum likelihood estimate, Least square estimate, MAP estimate, Minimum mean square estimate.		
	INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATION	(09 Hours)	
	Introduction to Partial differential equation, Formation of partial differential Equation, Partial differential Equation of first order, Linear partial differential equation of first order (Pp + Qo		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

=R) and method of obtaining its general solution, Non-linear partial differential equation of first order $f(p, q)=0$, $f(z, p, q)=0$, $f(x, p)=g(y, q)$, $z=px+qy+f(p,q)$.		
BASIC CONCEPTS OF VECTOR CALCULUS	(08 Hours)	
Scalar and vector point function, differential operator, gradient, directional derivative, divergence, curl and Laplacian operator with their properties.		
LINEAR ALGEBRA	(11 Hours)	
Linear systems, Elementary row and column transformation, rank of matrix, consistency of linear system of equations, Linear Independence and Dependence of vectors, Gauss Elimination method, Gauss-Jorden Method, Gauss-Jacobi Iteration Method; Vector spaces, Subspace, Field, Ring, Norm and distance, Linear Mapping, Orthogonality, Eigenvectors and Eigenvalues, Least square, Least square data fitting, Constrained least square applications.		
Tutorials will be based on the coverage of the above topics separately.	(15 Hours)	
(Total Contact Time: 45 Hours + 15 Hours)	ours = 60 Hours)	

3.	Books Recommended
1	Kreyszing E., "Advanced Engineering Mathematics", John Wiley & Sons, Singapore, Int. Student Ed. 2015.
2	Wiley C. R., "Advanced Engineering Mathematics", McGraw Hill Inc., New York Ed. 1993.
3	Gilbert Strang, "Introduction to Linear Algebra", Wellesley Cambridge Press, 4th Ed., 2009.
4	David C. Lay, "Linear Algebra and its applications", 3rd Ed., Pearson, 2006.
5	A. Papoulis and S. U. Pillai, "Probability, Random Variables and Stochastic Processes", 4th Ed., Mc-Graw Hill, 2002.

ADD	ADDITIONAL REFERENCE BOOKS					
1	Ramana D. V., "Higher Engg. Mathematics", McGraw-Hill Inc., New Delhi, 2007.					
2	Srimanta Pal, Subodh C. Bhunia, "Engineering Mathematics", Oxford University Press, New Delhi, 2015.					
3	Mary L. Boas, "Mathematical Methods in the Physical Sciences", John Wiley & Sons, Ed.2005.					

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech. I (AI) Semester – II	Scheme	L	Т	Р	Credit
DIGITAL ELECTRONICS AND LOGIC DESIGN					
EC106		3	0	2	04

1.	Course Outcomes (COs): At the end of the course, students will be able to
CO1	acquire knowledge about different types of diodes and circuits.
CO2	apply the knowledge of gates, Boolean algebra and operational amplifier in designing logical and integrated circuits.
CO3	analyse the logical, integrated, and operational amplifier based circuits.
CO4	evaluate the different circuits and compare their performance.
CO5	design ALU and control unit.

2.	Syllabus					
	PN DIODE AND TRANSITOR	(07 Hours)				
	PN Diode Theory, PN Characteristic and Breakdown Region, PN Diode Application as Rectific Zener Diode Theory, Zener Voltage Regulator, Diode as Clamper and Clipper, Photodiode Theory LED Theory, 7 Segment LED Circuit Diagram and Multi Colour LED, LASER Diode Theory a Applications, Bipolar Junction Transistor Theory, Transistor Symbols And Terminals, Comm Collector, Emitter and Base Configurations, Different Biasing Techniques, Concept of Transistor Amplifier, Introduction to FET Transistor And Its Feature.					
	WAVESHAPING CIRCUITS AND OPERATIONAL AMPLIFIER (06 H					
	Linear Wave Shaping Circuits, RC High Pass and Low Pass Circuits, RC Integrator a Differentiator Circuits, Nonlinear Wave Shaping Circuits, Two Level Diode Clipper Circuit Clamping Circuits, Operational Amplifier OP-AMP with Block Diagram, Schematic Symbol of CAMP, 741 Package Style and Pinouts, Specifications of Op-Amp, Inverting and Non-Invertional Amplifier, Voltage Follower Circuit, Multistage OP-AMP Circuit, OP-AMP Averaging Amplifications of Op-AMP Subtractor.					
	BOOLEAN ALGEBRA AND SWITCHING FUNCTIONS	(04 Hours)				
	Basic Logic Operation and Logic Gates, Truth Table, Basic Postulates and Fundamental Theore of Boolean Algebra, Standard Representations of Logic Functions- SOP and POS Forr Simplification of Switching Functions-K-Map and Quine-Mccluskey Tabular Methods, Syntheor of Combinational Logic Circuits.					
	COMBINATIONAL LOGIC CIRCUIT USING MSI INTEGRATED CIRCUITS	(07 Hours)				

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

Practical will be based on the coverage of the above topics separately.	(30 Hours
Control Organization; Hard-Wired Control; Micro Program Control; Control Of PLA Control.	Processor Uni
CONTROL LOGIC DESIGN	(04 Hours
Processor Organization; Design of Arithmetic Logic Unit; Design of Accumulato	r.
PROCESSOR LOGIC DESIGN	(03 Hour
Arithmetic, Logic and Shift Micro-Operation; Conditional Control Statements; Floating-Point Data; Arithmetic Shifts; Instruction Code and Design Of Simple C	
REGISTER TRANSFER LOGIC	(04 Hour
Basic Concepts of Counters and Registers; Binary Counters; BCD Counters; Up Johnson Counter, Module-N Counter; Design of Counter Using State Diagon Sequence Generators; Shift Left and Right Register; Registers with Parallel Parallel-Out (SIPO) And Parallel-In-Serial-Out (PISO); Register using Different Ty	rams and Table Load; Serial-Ir
SEQUENTIAL LOGIC CIRCUIT DESIGN	(06 Hour
Basic Concepts of Sequential Circuits; Cross Coupled SR Flip-Flop Using NAND of Flip-Flop Rise Condition; Clocked Flip-Flop; D-Type and Toggle Flip-Flops; Texcitation Tables for Flip-Flops; Master Slave Configuration; Edge Triggered and Flip-Flops; Elimination of Switch Bounce using Flip-Flops; Flip-Flops with Preservation	ruth Tables ard Level Triggere
INTRODUCTION TO SEQUENTIAL LOGIC CIRCUITS	(04 Hour
Demultiplexer Circuits; Implementation of Boolean Functions Using Decoder Arithmetic and Logic Unit; BCD to 7-Segment Decoder; Common Anode and Conference of T-Segment Displays; Random Access Memory, Read Only Memory and Erasabl ROMS; Programmable Logic Array (PLA) and Programmable Array Logic (PAL).	ommon Cathod

3.	Practical
1	Study of BJT Characteristics
2	Study of CE Amplifier
3	Study of RC Coupled / Tuned Amplifier
4	Study of FET Characteristics

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

5	Study of Diode Clipper Circuits
6	Study of Diode Clamper Circuits
7	Study and Implement RC Low Pass and High Pass Filter Circuits
8	Study and Implement RC Integrator Circuits
9	Study and Implement RC Differentiator Circuits
10	Full and Half-Adder/ Half-subtarctor Circuits using a serial Input
11	4-Bit Gray to Binary/ Binary to Gray Code convertor using Select input
12	Logic expression with the Help of MUX IC 74153
13	Flip-flops using NAND/ NOR Gate
14	Modulo-7 Ripple Counter
15	4-Bit Shift Left/Right Register
16	Sequence Generator

4.	Books Recommended
1	Schilling Donald L. and Belove E., "Electronics Circuits- Discrete and Integrated", 3rd Ed., McGraw-Hill, 1989, Reprint 2008.
2	Millman Jacob, Halkias Christos C. and Parikh C., "Integrated Electronics", 2nd Ed., McGraw-Hill, 2009.
3	Taub H. and Mothibi Suryaprakash, Millman J., "Pulse, Digital and Switching Waveforms", 2nd Ed., McGraw-Hill, 2007.
4	Mano Morris, "Digital Logic and Computer Design", 5th Ed., Pearson Education, 2005.
5	Lee Samual, "Digital Circuits and Logic Design", 1st Ed., PHI, 1998.
ADD	ITIONAL REFERENCE BOOKS
1	Malvin Albert & David J. Bates, "Electronic Principles", 7th edition, Tata McGraw Hill, 2007.
2	De Debashis, "Basic of Electronics", 1st Ed., Pearson Education, 2008.
3	Floyd and Jain, "Digital Fundamentals", Pearson Education, 2006.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech.1 /M.Sc. 1 Semester I/ II INDIAN VALUE SYSTEM AND SOCIAL CONSCIOUSNESS	Scheme	L	Т	P	Credit
HS120		2	0	0	02

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	interpret the important values that need to be cultivated
CO2	analyse the cultures depicted in Ramayana, Mahabharata, Jainism and Buddhism
CO3	review the structure of Indian knowledge system
CO4	discuss the significance of constitution of India
CO5	demonstrate social responsibility

2.	Syllabus					
	HUMAN VALUES AND CONSCIOUSNESS	(08 Hours)				
	Human Values Definition and Classification of Values; The Problem of Hierarchy of Values their Choice; Self-Exploration; 'Basic Human Aspirations; Right understanding, Relations and Physical Facility; fulfilment of aspirations; Understanding Happiness and Prospe Harmony at various levels. What Is Consciousness?; Can We Build A Conscious Machine?; Levels Of Consciousness; Matter And Beyond; Holistic Lifestyle; Dealing With Anxiety; Connecting Mind To Brain; Mind To B					
	Brains, And Programs. INDIAN CULTURE AND HERITAGE					
	Culture and its salient features: The Vedic – Upanishadic Culture and society, Humaspirations in those societies; Culture in Ramayana and Mahabharata: The Ideal Man a Woman, Concepts Maitri, Karuna, Seela, Vinaya, Kshama, Santi, Anuraga – as exemplified the stories and anecdotes of the Epics; The Culture of Jainism: Jaina conception of Soul, Karuna liberation, Buddhism as a Humanistic culture; The four Noble truths of Buddhism; Vedar and Indian Culture;					
	INDIAN KNOWLEDGE SYSTEM	(08 Hours)				
	Indian knowledge as a unique system, Place of Indian knowledge in mankind's evolut Relevance of Indian knowledge to present day and future of mankind, Nature of Indian Knowledge; Structure of Indian Knowledge: Types of knowledge (para, apara), The scient and the unscientific, Instruments for gaining and verifying knowledge, Knowledge tradition Lineages, Instruments - debate, epistemology and pedagogy, The inverted tree – axiomal deductive, empirical knowledge, and evolution of knowledge; Disciplines of Study: A beginning and evolution of knowledge; Dis					

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

tline of the subjects, the major contributions and theories along with timelines where levant: Mathematics; Astronomy; Physical Sciences; Cosmogony; Language studies; trology; Moral studies/righteousness; Statecraft and political philosophy		
INDIAN CONSTITUTION	(04 hours)	
History of Making of the Indian Constitution; Philosophy of the Indian Constitution: Preamble; Salient Features; Contours of Constitutional Rights & Duties; Organs of Governance: Parliament; Composition; Qualifications and Disqualifications; Powers and Functions		
SOCIAL RESPONSIBILITY	(03 Hours)	
Social Responsibility: Meaning and Importance, Different Approaches of Social Responsibility. Social Responsibility of Business towards different Stakeholders. Evolution and Legislation of CSR in India.		
(Total Contact Time: 30 Hours)		

3.	Books Recommended
1	D. K. Chaturvedi, Professional Ethics Values and Consciousness, Ane Books Pvt. Ltd., 2023.
2	R.R. Gaur, R Sangal, G. P. Bagaria, Human Values and Professional Ethics, Excel Books, New Delhi, 2010.
3	A.N. Tripathi, Human Values, New Age Intl. Publishers, New Delhi, 2004.
4	P R Rao, Indian Heritage and Culture, Sterling Publishers Pvt. Ltd, 1988.
5	D. Singh, Indian Heritage and Culture, APH Publishing Corporation, 1998.
6	Sri Prashant Pole, Treasure Trove of Indian knowledge, Prabhat Prakashan, 2021.
7	Sri Suresh Soni, Sources of our cultural heritage, Prabhat Prakashan, 2018.
8	D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B. Tech. II (AI) Semester – III COMPUTER ORGANIZATION		L	Т	Р	Credit
A1201	Scheme	3	1	0	04

1. (1. Course Outcomes (COs):					
At th	At the end of the course, students will be able to					
CO1	acquire knowledge of basics of computer architecture, its components with peripheral devices, instruction set architecture, instruction execution using data path and control unit interface.					
CO2	apply knowledge of combinational and sequential logic circuits to mimic simple computer architecture to solve the given problem.					
CO3	analyze performance of various instruction set architecture, control unit, memories, various processor architectures.					
CO4	evaluate programming solutions to implement fast methods of ALU, FP unit implementations, processor architectures and instruction set architectures.					
CO5	implement fast methods of ALU, FP unit implementations and to design and develop hardware solution for given instruction coding scheme of an Instruction Set Architecture or vice versa using available technology tools.					

2.	<u>Syllabus</u>				
	PROCESSOR BASICS	(06 Hours)			
	Basics CPU Organization - Functional Units, Data Paths, Registers, Stored Program Concept,	d Program Concept, Data			
	Representation - Basic Formats, Fixed and Floating Point Representation, Instruction Sets, Instruction				
	Types, Instruction Formats, Addressing Modes, Designing of an Instruction Set, Data path Design, Concepts				
	of Machine Level Programmig, Assembly Level Programming and High Level Programming.				
	ARITHMETIC AND LOGIC UNIT	(08 Hours)			
	Arithmetic and Logical Operation and Hardware Implementation, Implementation of some Complex				
	Operation: Fixed-Point Arithmetic Multiplication Algorithms-Hardware Algorithm, Booth Multiplication				
	Algorithm, Division Algorithm, Divide Overflow Algorithm, Combinational ALU and Sequential ALU, Floating				
	Point Arithmetic Operations.				
	CONTROL UNIT	(07 Hours)			
	Basic Concepts, Instruction Interpretation and Execution, Hardwired Control, Microprogram	med Control,			
	CPU Control Unit Design, Performance.				

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

SUBROUTINE MANAGEMENT	(04 Hours)		
Concepts of Subroutine, Subroutine Call and Return.	.1		
MEMORY ORGANIZATION	(06 Hours)		
Concepts of Semiconductor Memory, Cpu-Memory Interaction, Organization of Memory M	odules, Cache		
Memory and Related Mapping and Replacement Policies, Virtual Memory.			
SYSTEM ORGANIZATION	(06 Hours)		
Introduction to InputAnd Output Processing, Working with Video Display Unit and Keyboard and			
Control them, Programmed Controlled I/O Transfer, Interrupt Controlled I/O Transfer, DMA	A Controller,		
Secondary Storage and Type Of Storage Devices, Introduction to Buses and Connecting I/O	Devices to CPU		
and Memory.			
PIPELINE CONTROL AND PARALLEL PROCESSING	(08 Hours)		
Instruction Pipelines, Pipeline Hazards, Pipeline Performance, Superscalar Processing, Introd	duction to		
Parallel Processing, Processor-Level Parallelism, Multiprocessor.			
Tutorials will be based on the coverage of the above topics separately.	(15 Hours)		
(Total Contact Time: 45 Hours + 15 H	lours = 60 Hours)		

3. Tutorials:

- 1. Problems on data conversion in various formats and floating-point representation
- 2. Solving computations involving complex arithmetic operations and hardware implementation of the same
- 3. Interpretation of basic instruction execution and various addressing modes possible
- 4. Learning instruction set architecture level instructions for the high level language programming
- 5. Problems on memory management, mapping and replacement policies

4. Books Recommended:

- 1. John L. Hannessy, David A. Patterson, "Computer organization and Design", 3/E, Morgan Kaufmaan, reprint 2003.
- 2. Andrew S. Tanenbaum, "Structured Computer Organization", 6/E, PHI EEE, reprint 1995.
- 3. William Stallings, "Computer Organization & Architecture: Designing For Performance", 6/E, PHI, 2002.
- 4. Carl Hamacher, Zvonko Vranesic, Safwat Zaky, "Computer Organization", 5/E, McGraw-Hill, 2002.
- 5. Morris Mano, "Computer Systems Architecture", 3/E, PHI, reprint 1997.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B. Tech. II (AI) Semester – III DATABASE MANAGEMENT SYSTEMS	L	Т	Р	Credit
Al203 Scheme	3	0	2	04

1. Course Outcomes (COs):					
At the end of the course, students will be able to					
CO1	understand different database models and query languages to manage the data for given real life application scenario.				
CO2	apply the concept of database model, relational tables, normalization to solve different problems.				
CO3	analyze the problems for designing the effective solution using procedural and nonprocedural languages and/or index.				
CO4	evaluate the solution using transaction management, concurrency management, query performance and optimization, or recovery.				
CO5	implement an efficient solution using industry standards for real life problems.				

2.	<u>Syllabus</u>			
	INTRODUCTORY CONCEPTS OF DBMS	(03 Hours)		
	Introduction, Applications of DBMS, Purpose of Database, Data Independence, Data Architecture, Data Abstraction, Database users and DBA.	itabase System		
	ENTITY RELATIONSHIP MODEL	(06 Hours)		
	Basic Concepts, Design Process, Constraints, Keys, Design Issues, E-R Diagrams, Attribute Mapping Cardinality, Types of Relationship, Weak/Strong Entity Sets, Extended E-R Feat Generalization, Specialization, Aggregation.			
	RELATIONAL MODELS	(04 Hours)		
	Structure of Relational Databases, Domains, Relations, Mapping of ER Model to Re Relational Algebra – Fundamentals, Operators and Syntax, Relational Algebra Queries, Calculus.			
	RELATIONAL DATABASE DESIGN	(08 Hours)		
	Functional Dependency – Definition, Trivial and Non-trivial FD, Closure of FD Set, Closur Irreducible Set of FD, Normalization – 1Nf, 2NF, 3NF, Decomposition using FD			

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Preservation, BCNF, Multi- Valued Dependency, 4NF, Join Dependency and 5NF.	
QUERY PROCESSING AND OPTIMIZATION	(05 Hours)
Overview of Query Processing, Measures of Query Cost, Select Operation, Sorting, Join O Operations, Evaluation of Expressions, Overview of Query Optimization, Transformation Expressions, Estimating Statistics of Expression Results, Choice of Evaluation Plans, Material Advanced Topics in Query Optimization.	n of Relational,
TRANSACTION MANAGEMENT	(06 Hours)
Transaction Concepts, Properties of Transactions, Serializability of Transactions Serializability, Concurrent Executions of Transactions and Related Problems, Locking Solution to Concurrency Related Problems, Two-phase Locking Protocol, Deadlock, Is Locking, System Recovery, Recovery and Atomicity, Log-based Recovery.	ng Mechanism,
SQL CONCEPT	(05 Hours)
Basics of SQL, DDL,DML,DCL, Structure — Creation/Alteration, Defining Constraints - Foreign Key, Unique, Not Null, Check, IN Operator.	- Primary Key,
PL-SQL CONCEPT	(04 Hours)
Cursors, Stored Procedures, Stored Function, Database Triggers.	
ADVANCED TOPICS	(04 Hours)
Data Security: Introduction, Discretionary Access Control, Mandatory Access Control, D Semi Structured Data and XML, Object Oriented and Object Relational DBMS, Distributed DBMS.	
Practicals will be based on the coverage of the above topics separately	(30 Hours)
(Total Contact Time: 45 Hours + 30 Ho	urs = 75 Hours)

4.	Practicals:
1	Implementation for Physical data storage (Sequential, Index Sequential)
2	Practicing DDL and DML Queries for database creation and managing the data
3	Develop a Database system for the real life application scenario by managing the storage constrains
4	Practicing PL/SQL with the designed databases
5	Design considering Transaction management and concurrency control

6	Design of ER model based example
7	Design of Relational model based example
8	Design of Normalized form of database

5. Books Recommended:

- 1. A Silberschatz, H. F. Korth, and S Sudarshan, "Database System Concepts", 6/E, TMH, 2010.
- 2. McFadden, F.Hoffer, Prescott : M. B "Modern database management", 8/E, Benjamin/Cummings Inc,2006.
- 3. C.J Date, "An Introduction to Database Systems", Publisher: Addison, Wesley, 8/E, 2003.
- 4. Raghu Ramakrishnan and Gehrke: "Database Management System", 3/E, WCB/McGraw-Hill, 2003.
- 5. Margaret H. Dunham, "Data Mining: Introductory and advanced topics", Pearson Education, 2003.

B. Tech. II (AI) Semester – III DESIGN AND ANALYSIS OF ALGORITHMS		L	Т	Р	Credit
AI205	Scheme	3	1	0	04

1. <u>C</u>	1. Course Outcomes (COs):					
At th	At the end of course, students will be able to					
CO1	Acquire knowledge about the application of mathematical formula and technique to solve the					
	problem and computational complexity analysis.					
CO2	Apply the different algorithm design techniques for designing a solution of different					
	applications.					
CO3	Analyse the performance of algorithms using different algorithmic design techniques based on					
	asymptotic or amortized or probabilistic methods.					
CO4	Evaluate the correctness and implementation of algorithms using different methods of					
	performance evaluation.					
CO5	Design and innovate efficient algorithms in the field of computer science & engineering and					
	industry related applications using the different algorithm design techniques.					

2.	Syllabus				
	INTRODUCTION	(06 Hours)			
	Introduction to Algorithms, Analysis and Design Techniques, Analysis Techniques: Mathematical, Empirica and Asymptotic Analysis. Recurrence Relations and Solving Recurrences, Mathematical Proof Techniques, Amortized Analysis, Probabilistic Analysis.				
	DIVIDE AND CONQUER APPROACH	(06 Hours)			
	Sorting & Order Statistics, Divide and Conquer Technique, Various Comparison based Sorts, Analysis of the Worst-Case and the Best-Cases, Randomized Sorting Algorithms, Lower Bound on Sorting, Non-comparison based Sorts, Medians and Order Statistics, Min-Max Problem, Polynomial Multiplication, Fast Fourier Transform.				
	GREEDY DESIGN TECHNIQUES	(08 Hours)			
	Basic Greedy Control Abstraction, Motivation, Thirsty Baby Problem, Formalization, Activity Selection and its Variants, Huffman Coding, Horn Formulas, Tape Storage Problem, Container Loading Problem, Knapsack Problem, Graph Algorithms, Graph algorithms: All-pairs Shortest Paths, Topological Ordering of DAG, DFS in Directed Graphs, Strongly Connected Components, Minimum Spanning Trees, Single Source Shortest Paths, Maximum Bipartite Cover Problem, Network Flows: Ford Fulkerson Algorithm, Max-flow Min-cut Theorem, Polynomial Time Algorithms for Max-flow.				
	DYNAMIC PROGRAMMING	(08 Hours)			

SEARCHING ALGORITHMS	(05 H
Backtracking, N-Queens Problem, Sum of Subset Problem, Complexity analysis, 15-Puzzle Problem. Problem.	
NUMBER THEORETIC ALGORITHMS	(06 ו
Number Theoretic Notions, GCD, Modular Arithmetic, Chinese Remaind Groups, Galois Fields, Applications in Cryptography, Primality Testing.	er Theorem, Generators, Cycl
	er Theorem, Generators, Cycl
Groups, Galois Fields, Applications in Cryptography, Primality Testing.	er Theorem, Generator

3.	Tutorials:
	1. Problem solving on time analysis of sorting algorithms.
	2. Problem solving on divide and conquer technique.
	3. Problem solving on greedy design technique.
	4. Problem solving on dynamic programming.
	5. Problem solving on searching algorithms.
	6. Problem solving on back tracking technique.
	7. Problem solving on Graph based algorithms.
	8. Problem solving on branch and bound technique.

4. **Books Recommended:**

- 1. Cormen, Leiserson, Rivest, Stein," Introduction to Algorithms", 3/E, MIT Press, 2009.
- 2. J. Kleinberg, E. Tardos, "Algorithm Design", 1/E, Pearson Education, Reprint 2006.
- 3. SartajSahni, "Data Structures, Algorithms and Applications in C++", 2/E, Universities Press/Orient Longman, 2005
- 4. Sara Baase, Allen van Gelder," Computer Algorithms: Introduction to Design & Analysis, 3/E, Pearson

B. Tech. II (AI) Semester – III DISCRETE MATHEMATICS		L	Т	Р	Credit
MA221 Sc	cheme	3	1	0	04

1. Course Outcomes (COs):

At the end of the course, students will be able to

CO1	acquire knowledge of sets, group and functions, graphs.
CO2	apply group theory, relations and lattice.
CO3	analyse functions, counting and based on mathematical logic.
CO4	evaluate formal verification of computer programmes.
CO5	design solutions for various types of problems in different disciplines like information security, optimization, mathematical analysis.

2.	<u>Syllabus</u>	
	Introduction	(04 Hours)
	Introduction to set theory, Basics of functions, Application of Functions in Computer Sc	ience Areas.
	GROUP THEORY	(08 Hours)
	Basic Properties of Group, Groupoid, Semigroup & Monoid, Abelian Group, Subgroup, Gubgroup, Lagrange's Theorem, Cyclic Group, Permutation Group, Homomorphism & Is Groups, Basic Properties, Error Correction & Detection Code.	
	RELATION & LATTICES	(06 Hours)
	Definition & Basic Properties, Graphs Of Relation, Matrices Of Relation, Equivalence Re Classes, Partition, Partial Ordered Relation, Posets, Hasse Diagram, Upper Bounds, Low LUB Of Sets, Definition & Properties Of Lattice, Sub Lattice, Distributive & Modular Latt Complemented & Bounded Lattices, Complete Lattices & Boolean Algebra.	er Bound, GLB &
	MATHEMATICAL LOGIC AND PROGRAM VERIFICATION	(06 Hours)
	Induction, Propositions, Combination Of Propositions, Logical Operators & Propositions Equivalence, Predicates & Quantifiers, Interaction of Quantifiers with Logical Operators Interference & Proof Techniques, Formal Verification of Computer Programs (Elements	s, Logical
	COUNTING AND RECURRENCE RELATION	(06 Hours)
	First Counting Principle, Second Counting Principle, Permutation, Circular Permutations Pigeonhole Principle, Recurrence Relations, Linear Recurrence Relations, Inclusion And Generating Functions.	

	BASICS OF GRAPHS	(05 Hours)	
	Graph Definition, Graph Representation, Basic Concepts Of Finite & Infinite Graph, Inci	dence & Degree,	
	Isomorphism, Subgraph, Walk, Path & Circuits, Cliques, Cycles and Loops, Operations O	n Graphs,	
	Connected Graph, Disconnected Graph & Components, Complete Graph, Regular Graph	Graph, Bipartite Graph,	
	Planar Graphs, Weighted Graphs, Directed & Undirected Graphs, Connectivity Of Graph	ns.	
	GRAPHS ALGORITHMS	(10 Hours)	
	Flows, Combinatorics, Euler's Graph, Hamiltonian Paths & Circuits, Activity Planning and	d Critical Path,	
Planar Graphs: Properties, Graph Coloring, Vertex Coloring, Chromatic Polynomials, Edge Colori		ge Coloring, Planar	
	Graph Coloring, Matching and Factorizations: Maximum Matching In Bipartite Graphs, Maximum		
	In General Graphs, Hall's Marriage Theorem, Factorization; Networks: Max-Flow Min-Co	ut Theorem,	
	Menger's Theorem, Graph and Matrices; Probabilistic Graphical Models: Graphical mod	•	
	models: Bayesian network, Undirected model: Markov Random Fields, Dynamic model:		
	Model, Learning in Graphical models: Parameter estimation, Expectation Maximization	•	
		_	
	Tutorials will be based on the coverage of the above topics separately	(15 Hours)	
	(Total Contact Time: 45 Hours + 15 Hours = 60 Ho		

3.	Tutori <u>als:</u>
	Problem solving on group theory.
	2. Problem solving on relation and lattices.
	3. Problem solving on mathematical logic and program verification.
	4. Problem solving on counting and recurrence relation.
	5. Problem solving on basics of graphs.
	6. Problem solving on graph algorithms.

3. Books Recommended:

- 1. Rosen K.H., "Discrete Mathematics and Its Applications", 6/E, MGH, 2006.
- 2. Liu C.L., "Elements of Discrete Mathematics", MGH, 2000.
- 3. Deo Narsingh., "Graph theory with applications to Engineering & Computer Science", PHI, 2000.
- 4. J. A.Bondy and U. S. R.Murty, "Graph Theory", Springer, 2008.
- 5. V. K. Balakrishnan, "Theory and Problems of Graph Theory", Tata McGraw-Hill, 2007.

ADDITIONAL REFERENCE BOOKS

- 1. Kolman B., Busby R.C. & Ross S., "Discrete Mathematical Structure", 5/E, PHI, 2003.
- 2. Tremblay J. P. & Manohar R., "Discrete Mathematical structure with applications to computer science", MGH, 1999.
- 3. D. B. West, "Introduction to Graph Theory", 2nd Edition, PHI 2002.
- 4. G. Chatrand and O.R. Ollermann, "Applied and Algorithmic Graph Theory", McGraw Hill, 1993.

B. Tech. II (AI) Semester – III SIGNALS AND SYSTEMS	L	Т	Р	Credit
EC203 Scheme	3	1	0	04

1. (Course Outcomes (COs):						
At the	At the end of the course, students will be able to						
CO1	Describe Signals and Systems with their classifications						
CO2	Describe Z-transform and its properties						
CO3	Analyse discrete-time system with Z-transform						
CO4	Understand the process of sampling and aliasing error.						
CO5	Analyze Discrete Time Fourier Transform and Discrete Fourier Transform for LTI systems						

2.	<u>Syllabus</u>					
	INTRODUCTION	(05 Hours)				
	Introduction to Signal and its Classification, Concept of Frequency in Continuous-Time and Di	screte-Time				
	Signal.					
	DISCRETE TIME SIGNAL AND SYSTEM	(08 Hours)				
	Discrete-Time Signals and basic operations, Discrete Time Systems, Linear Time-Invariant Sys	tems,				
	Properties of LTI Systems, Causal LTI Systems Described by Difference equations.					
	Z-TRANSFORM	(08 Hours)				
	Z-transform, Properties of Region of convergence, Inverse Z-transform, properties of Z transf	orm. Z-				
	transform for LTI systems with pole-zero patterns					
	SAMPLING	(08 Hours)				
	Sampling theorem, Periodic Sampling, Frequency-Domain Representation of Sampling, Recor	struction of				
	sampled signals, Aliasing error, sampling theorem, Sampling of Bandlimited Signals					
	DISCRETE TIME FOURIER TRANSFORM (DTFT) and DISCRETE FOURIER TRANSFORM (DFT)	(08 Hours)				
	DTFT and it's convergence, Properties of DTFT, Sampling the Fourier Transform, The Discrete	Fourier				
	Transform, Properties of the Discrete Fourier Transform.					
	FREQUENCY DOMAIN ANALYSIS OF LINEAR TIME-INVARIANT SYSTEMS	(08 Hours)				
	Frequency Domain Representation of Discrete-Time Systems, Frequency Response for Ration	al systems				
	Functions, Frequency Response of LTI Systems, System analysis with frequency domain representation.					

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Time domain and Frequency domain aspects of ideal and non-ideal filters
(Total Contact Time: 45 Hours+ 15 Hours = 60 Hours)

3. Tutorial:	
Introduction to Signals and Systems	
Basic Signal Operations	
Fourier Series and Fourier Transform	
Laplace Transform and Its Applications	
Z-Transform and Discrete-Time Signal Analysis	
Convolution and Correlation	
Sampling Theorem and Signal Reconstruction	
Linear Time-Invariant (LTI) Systems	
Frequency Response and Filtering	
Modulation and Communication Systems	

4. Books Recommended:

- 1. Barry Van Veen Simon Haykin, "Signals and Systems", 2nd Ed., Wiley, 2007
- 2. Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, "Signals and Systems Prentice Hall India", 2nd Ed., Pearson, 2009.
- 3. B.P. Lathi, "Principles of Linear Systems and Signals", 2nd Ed., oxford, 22 Jul 2009
- 4. John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing, Principles, Algorithms, and Applications", 4th Ed., PHI, 2007.
- 5. Robert A. Gable, Richard A. Roberts, "Signals & Linear Systems", 3rd Ed., John Wiley, 1995.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B. Tech. II (AI) Semester – IV ARTIFICIAL INTELLIGENCE		L	Т	Р	Credit
AI202	Scheme	3	0	2	04

1.	Course Outcomes (COs):							
At en	At end of the program, students will be able to							
CO1	understand the role of agents and how it is related to environment and the way of evaluating it and how agents can act by establishing goals.							
CO2	apply various knowledge representation technique, searching techniques, constraint satisfaction problem and example problems- game playing techniques.							
CO3	analyse the current scope, potential, limitations, and implications of intelligent systems.							
CO4	evaluate the AI techniques suitable for recent areas of applications like expert systems, neural networks, fuzzy logic, robotics, natural language processing, and computer vision.							
CO5	design a real world problem for implementation and understand the dynamic behaviour of a system.							

2.	<u>Syllabus</u>				
	INTRODUCTION TO AI	(05 Hours)			
	Intelligent Agents, AI Techniques, AI-Problem formulation, AI Applications, Production System Strategies.	ns, Control			
	KNOWLEDGE REPRESENTATION				
	Knowledge Representation Using Predicate Logic, Introduction to Predicate Calculus, Resolut Predicate Calculus, Knowledge Representation Using other Logic-Structured Representation				
	PRODUCTION SYSTEM	(06 Hours)			
	Defining the Problems as a State Space Search, Production Systems, Production Characteristic System Characteristics, Forward and Backward, State-Space Search, Problem Solving Method Graphs, Matching, Indexing.	•			
	PROBLEM-SOLVING THROUGH SEARCH	(06 Hours)			
	Generate and Test, BFS, DFS, Blind, Heuristic, Problem-Reduction, A, A*, AO*, Minimax, Constraint Propagation, Neural, Stochastic, and Evolutionary Search Algorithms, Sample Applications, Measure of Performance and Analysis of Search Algorithms, Problem Reduction, Constraint Satisfaction, Means-Ends Analysis, Issues in the Design of Search Programs.				

KNOWLEDGE INFERENCE	(06 Hours)			
Knowledge Representation -Production Based System, Frame Based System; Inference — Backward Chaining, Forward Chaining, Rule Value Approach; Fuzzy Reasoning — Certainty Factors, Bayesian Theory-Bayesian Network-Dempster — Shafer Theory; Symbolic Logic Under Uncertainty: Non-Monotonic Reasoning, Logics for Non-Monotonic Reasoning; Statistical Reasoning: Probability and Bayes Theorem, Certainty Factors, Probabilistic Graphical Models, Bayesian Networks, Markov Networks, Fuzzy Logic.				
GAME PLAYING AND PLANNING	(06 HOURS)			
Overview and Example Domain: Overview, Minimax, Alpha-Beta Cut-Off, Refinements, Iterative Deepening, The Blocks World, Components of a Planning System, Goal Stack Planning, Nonlinear Planning Using Constraint Posting, Hierarchical Planning, Reactive Systems, Other Planning Techniques.				
NATURAL LANGUAGE PROCESSING	(05 Hours)			
Introduction, Syntactic Processing, Semantic Analysis, Discourse and Pragmatic Processing, S	pell Checking.			
EXPERT SYSTEMS	(05 Hours)			
Expert Systems, Architecture of Expert Systems, Roles of Expert Systems, Knowledge Acquisition, Meta Knowledge, Heuristics, Typical Expert Systems – MYCIN, DART, XOON, Expert Systems Shells.				
Practicals will be based on the coverage of the above topics using prolog. (30 Hou				
(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)				

3.	Practicals:
1	Practical assignment to understanding basic concepts of prolog.
2	Practical assignment to implement various search strategies.
3	Practical assignment to implement various algorithm based on game theory.
4	Implementation of heuristic based search techniques.
5	Implementation of neural network based application.
6	Implementation of fuzzy logic based application.
7	Implementation of fuzzy inference engine for an application.
8	Implementation of neuro-fuzzy based system.

4. Books Recommended:

- 1. Elaine Rich and Kevin Knight, "Artificial Intelligence", 2nd Edition, Tata McGraw-Hill, 2003.
- 2. Stuart Russell, Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition, Prentice Hall, 2009.

- 3. Nils Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kaufmann, 1998,
- 4. W. Patterson, 'Introduction to Artificial Intelligence and Expert Systems', Prentice Hall of India, 2010.
- 5. I. Bratko, "Prolog Programming for Artificial Intelligence", 3/E, Addison-Wesley, 2001, 0-201-40375-7.

B. Tech. II (AI) Semester – IV OPERATING SYSTEMS		L	Т	Р	Credit
AI204 Sc	cheme	3	0	2	04

1. <u>C</u>	1. Course Outcomes (COs):					
At the	At the end of course, students will be able to					
CO1	understand the significance of operating system in computing devices, exemplify the communication between application programs and hardware devices through system calls.					
CO2	compare and illustrate various process scheduling algorithms.					
CO3	apply appropriate memory and file management schemes.					
CO4	illustrate various disk scheduling algorithms.					
CO5	design access control and protection based modules for an operating system.					

2.	<u>Syllabus</u>			
	OPERATING SYSTEM OVERVIEW	(04 Hours)		
	Operating System (OS) Objectives, Evolution, Types, Major Achievements, Modern Operatives, OS Design Considerations for Multiprocessor and Multicore.	ating Systems,		
	PROCESSES AND THREADS	(05 Hours)		
	Process Concept, Process States, Process Description, Process Control Block, PCB as a Da Contemporary Operating Systems, Process Hierarchy, Processes vs Threads, Types of Thr and Multithreading, Case Study: Linux & Windows Process and Thread Management and System Calls.	reads, Multicore		
	CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION	(05 Hours)		
	Principles of Concurrency, Mutual Exclusion, Semaphores, Monitors, Message Passing, R Problem.	eaders/Writers		
	CONCURRENCY: DEADLOCK AND STARVATION	(05 Hours)		
	Principles of Deadlock, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, E Philosopher's Problem, Case Study: Linux & Windows Concurrency Mechanism.	Dining		
	SCHEDULING	(08 Hours)		

Uniprocessor Scheduling: Long Term Scheduling, Medium Term Scheduling, Short Term Scheduling Algorithms: Short Term Scheduling Criteria, Use of Priorities, Alternative Sche Performance Comparison, Fair-Share Scheduling. Multiprocessor Scheduling: Granularit Process Scheduling, Thread Scheduling, Real-Time Scheduling: Characteristics of RTOS, R Scheduling, Deadline Scheduling, Rate Monotonic Scheduling, Priority Inversion. Case St Windows Scheduling.	eduling Policies, y, Design Issue, eal-Time	
MEMORY MANAGEMENT	(05 Hours)	
Memory Hierarchy, Static and Dynamic Memory Allocation, Overview of Swapping, Mult Contiguous and Non-Contiguous Memory Allocation, Concepts of Simple Paging, Simple	•	
VIRTUAL MEMORY	(05 Hours)	
Virtual Memory Concepts, Paging and Segmentation using Virtual Memory, Protection a Policy, Placement Policy, Replacement Policy, Resident Set Management, Cleaning Policy Case Study: Linux & Windows Memory Management.	•	
I/O MANAGEMENT AND DISK SCHEDULING	(04 Hours)	
I/O Device, Organisation of the I/O Function, Operating System Design Issue, I/O Buffering Scheduling, RAID, Disk Cache, Case Study: Linux & Windows I/O.	ng, Disk	
FILE MANAGEMENT	(04 Hours)	
Overview of : Files & File Systems, File Structure, File Management Systems, File Organis B-tree, File Directories, File Sharing, Record Blocking, Secondary Storage Management, F Security, Case Study: Linux & Windows File System.		
Practicals will be based on the coverage of the above topics separately	(30 Hours)	
(Total Contact Time: 45 Hours + 30 Hours= 75 Hours)		

3.	Practicals:
1	Introduction to Basic and Advance commands of Linux.
2	Introduction to Shell Script and programs based on it.
3	Practical based on different Memory management scheme.
4	Practical based on different Process scheduling algorithm.
5	Practical based on different Disk scheduling algorithm.
6	Process synchronization and deadlock.
7	Practical based on file management system.
8	Practical based on input output device management.

5. Books Recommended:

- 1. Silberschatz, Galvin and Gagne, "Operating System Concepts", 10/E, John Wiley & Sons, 2018.
- 2. W. Stallings, "Operating Systems: Internals and Design Principles", 9/E, Pearson Pub., 2017.
- 3. W Richard Stevens, Stephen A Rago, "Advanced Programming in the UNIX Environment"; 3/E, Addison Wesley Professional, 2013.
- 4. Kernighan & Pike, "UNIX programming Environment", 2/E, PHI-EEE, 2001.
- 5. A Tanenbaum, A Woodhull, "Operating Systems Design and Implementation", 3/E, PHI EEE, 2006.

ADDITIONAL REFERENCE BOOKS

1. Crawley, "Operating Systems - A Design Oriented Approach", 1/E, McGraw Hill, 1998.

B. Tech. II (AI) Semester – IV AUTOMATA AND FORMAL LANGUAGES		L	Т	Р	Credit
AI206	Scheme	3	1	0	04

1. <u>Cc</u>	ourse Outcomes (COs):				
At the	At the end of the course, students will be able to				
CO1	acquire knowledge of the basis of theory of computation, different computational problems and the				
	importance of automata as a modelling tool of computational problems.				
CO2	to apply rigorously formal mathematical methods to prove properties of languages, grammars and				
	automata.				
CO3	analyse the solutions for different problems and argue formally about correctness on different restricted				
	machine models of computation.				
CO4	evaluate and Identify limitations of computational models and possible methods of proving them.				
CO5	design the solution in the forms of different types of machine with correctness proof and able to develop				
	different system software.				

2.	<u>Syllabus</u>	
	INTRODUCTION	(06 Hours)
	Basic Mathematical Objects: Sets, Logic, Functions, Relations, Strings, Alph Induction: Inductive Proofs, Principles, Recursive Definitions, Set Notation.	
	FINITE AUTOMATA AND REGULAR EXPRESSIONS	(12 Hours)
	Finite State Systems, Deterministic Finite Automata; Nondeterministic Finite Automata with Epsilon, Applications, Kleene' Theorem; Two-way Fin Output, Regular Languages & Regular Expressions, Properties of Regular Set Regular Sets, Closure Properties, Decision Properties of Regular Languages Automata, Moore and Mealy Machines.	ite Automata, Finite Automata with ets: The Pumping Lemma for
	CONTEXT FREE GRAMMARS	(14 Hours)
	Definition, Derivation Trees & Ambiguity, Inherent Ambiguity, Parse Tree, of CFG, Normal Form of CFG, Chomsky Normal Form and Chomsky Hierard Context-Sensitive Languages, Relations between Classes of Languages, Pro The Pumping Lemma, Closure Properties, Decision Properties of CFL.	hy, Unrestricted Grammars,
	PUSHDOWN AUTOMATA	(06 Hours)
	Definitions, Languages of PDA, Equivalence of PDA and CFG, Deterministic	c PDA.
	TURING MACHINES	(07 Hours)

Turing Machine Model, Language of a Turing Machine (TM), Programming Techniques of the TM, Variations of TM, Multiple TM, One-Tape and Multi-Tape TM, Deterministic and Non deterministic TM, Universal TM, Churche Thesis, Recursively Enumerable Languages, Decidability, Reducibility, Intractable Problem Classes of Problems NP Hard, NP Complete.			
Tutorials will be based on the coverage of the above topics.	(15 Hours)		
(Total Contact Time: 45 Hours + 15 Hours = 60 Hours)			

3.	Tutorials:
1	Problem statements based on Regular Language and Finite Automata.
2	Questions based on Context Free Grammar.
3	Problems regarding Push Down Automata.
4	Solving Problems for Turing Machine.
5	Decidable and Undecidable Problems.

4. Books Recommended:

- 1. Michael Sipser, "Introduction to the Theory of Computation", Cengage Learning, 3/E, 2013.
- 2. John C Martin, "Introduction to Languages & the Theory of Computation", 3/E, Tata McGraw-Hill, 2011.
- 3. John E. Hopcroft, Rajeev Motwani, Jeffrey Ullman, "Introduction to Automata theory, languages computation, 3/E, Pearson India, 2008.
- 4. Daniel I A Cohen, "Introduction to Computer Theory", John Wiley & Sons, 2/E, Reprint 2008.
- 5. Andrew Ilachinski, "Cellular Automata", 1st Ed., World Scientific, 2001.

ADDITIONAL REFERENCE BOOKS

- 1. Sushil Kumar Azad, "Theory of Computation, An introduction to /automata, Formal Languages And Computability", Dhanpat Ray & Co., New Delhi, 2005.
- 2. A.M. Natarajan, A.Tamilarasi, "Theory of computation", New Age Publication, 1/E, 2003.

B. Tech. II (AI) Semester – IV COMPUTER NETWORKS		L	Т	Р	Credit
AI208 S	cheme	3	0	2	04

1. <u>C</u>	ourse Outcomes (COs):					
At the	At the end of the course, students will be able to					
CO1	understand computer network models and services offered at different layers of network protocol stack.					
CO2	apply knowledge of data communication, data transmission techniques using various transmission media to deliver error free data and communicate with multiple nodes.					
CO3	analyse various routing methods to identify effective routing protocols.					
CO4	evaluate network performance by means of transport and flow control protocols, Congestion Control protocols and Quality of services.					
CO5	create a computer network application using modern network tools and simulation softwares.					

2.	<u>Syllabus</u>	
	INTRODUCTION	(06 Hours)
	Overview of Computer Networks and Data Communication, Computer Networking Protoc Standards, Types of Computer Networks, Network Topology, Protocol Hierarchies and De Interfaces and Services, Networking Devices, OSI and TCP/IP Reference Models.	
	PHYSICAL LAYER	(06 Hours)
	Physical Layer Design Issues, Data Transmission Techniques, Multiplexing, Transmission N Asynchronous Communication, Wireless Transmission, ISDN, ATM, Cellular Radio, Switchiand Issues.	
	LOGICAL LINK CONTROL LAYER	(06 Hours)
	LLC Design Issues, Framing, Error and Flow Control, Framing Techniques, Error Control McControl Methods, PPP and HDLC.	ethods, Flow
	MEDIUM ACCESS CONTROL LAYER	(06 Hours)
	MAC Layer Design Issues, Channel Allocation Methods, Multiple Access Protocols - ALOHA CSMA/CD Protocols, Collision Free Protocols, Limited Contention Protocols, LAN Architect Standards, Ethernet(CSMA/CD), Token Bus, Token Ring, DQDB, FDDI, Bridges and Recent	tures, IEEE -802
	NETWORK LAYER	(07 Hours)

Network Layer Design Issues, Routing Algorithms and Protocols, Congestion Control Algorithms and QoS, Internetworking, Addressing, N/W Layer Protocols and Recent Developments.		
TRANSPORT LAYER	(07 Hours)	
Transport Layer Design Issues, Transport Services, Sockets, Addressing, Connection Establishment, Connection Release, Flow Control and Buffering, Multiplexing, Transport Layer Protocols, Real Time Transport Protocol (RTP), Stream Control Transmission Protocol (SCTP), Congestion Control, QoS and Recent Developments, Virtualization, Network Functions Virtualization(NFV), Software Defined Network		
APPLICATION LAYER	(07 Hours)	
Client Server Model, Domain Name System (DNS), Hyper Text Transfer Protocol (HTTP), Email: SMTP, MIME, POP3, Webmail, FTP, TELNET, Dynamic Host Control Protocol (DHCP), Simple Network Management Protocol (SNMP) and Recent Developments.		
Practicals will be based on the coverage of the above topics separately	(30 Hours)	
(Total Contact Time: 45 Hours + 30 Hours= 75 Hours		

3.	Practicals:
1	Study network configuration commands and computer network setup.
2	Implementation of different Data Link and MAC Layer protocols.
3	Implementationof different Network Layer protocols.
4	Implementation of different Transport and Application Layer protocols.
5	Design and configure a network systems using modern network simulator softwares.
6	Implementation of Secured Socket Layer protocol.
7	Implementation of ICMP based message transmission over network.
8	Implementation of SMTP protocol for mail transfer.

4. Books Recommended:

- 1. William Stalling, "Data and Computer Communication", 10/E, Pearson India, 2017.
- 2. B. Forouzan, "Data Communication and Networking", 5/E, McGraw Hill, 2017.
- 3. Douglas E. Comer, "Internetworking with TCP/IP Volume I", 6/E Pearson India, 2015.
- 4. Andrew S. Tanenbaum, "Computer Network", 5/E, Pearson India, 2013.
- 5. W. Richard Stevens, "TCP/IP Illustrated Volume I", 2/E, Addison Wesley, 2011.

B. Tech. II (AI) Semester – IV MICROPROCESSOR AND INTERFACING TECHNIQUES		L	Т	Р	Credit
Al232	Scheme	3	0	2	04

1. <u>Co</u>	1. Course Outcomes (COs):				
At the	end of the course, students will be able to				
CO1	Acquire knowledge of diff erent architectures, addressing modes and instructions of 8085/86.				
CO2	Interface memory, I/O devices and interrupt controller with 8085/86 microprocessors				
CO3	Analyse and compare the features of microprocessors and microcontrollers.				
CO4	Describe the internal architecture and different modes of operations of a typical peripheral device.				
CO5	Design and develop assembly language programs using 8085/86 instructions, soft ware interrupts, subroutines, macros.				

2.	<u>Syllabus</u>				
	INTRODUCTION TO MICROPROCESSOR EVOLUTION	(03 Hours)			
	Introduction to Microprocessor and Development and its Operation.				
	ARCHITECTURE FEATURES OF 8085	(04 Hours)			
	8085 Architecture and Pin out diagram, 8085 Operations.	_1			
	INTRODUCTION SET AND PROGRAMMING OF 8085	(06 Hours)			
	Data Transfer instructi ons, Arithmeti c instructi ons and its examples, Logical Ins Branch, Stack, and I/O related instructi ons, How to write, assemble and e programmes, Assembly language programming Practi ce Based on above instru Counters in 8085, Design Time delays in 8085, Stack & Subrouti nes: Restart onal Call and Return Instructi ons, Advanced Subroutine Concepts, Code Conversion	mble and execute assembly language above instructi ons for 8085, Design nes: Restart, Conditi onal and Unconditi			
	PERIPHERAL & MEMORY INTERFACING WITH 8085	(08 Hours)			
	Basic I/O Interfacing Concepts: Interfacing Display devices, Interfacing Input devices Absolute decoding, Parti al Decoding, Shadow Memory, Interfacing Peripherals Peripheral Interface, Examples of Interfacing Keyboard and seven-segment Disponal Data transfer Between Two Microcomputer, The 8254 (8253) Programmable 8259A Programmable Interrupt Controller, Direct Memory Access and 8237 DMA Programmable Keyboard/Display Interface, Interfacing Scanned Multi plexed Displays, Interfacing a Matrix Keyboard, Serial I/O and Data Communication: Bas	s: 8255A Programmable play, Examples of Bidirecti e Interval Timer, The A Controller, The 8279 ays and Liquid Crystal			

Software Controlled Asynchronous Serial I/O, The 8085-Serial I/O lines:	SOD and SID, Hardware
Controlled Serial I/O Using Programmable Chips.	
8085 INTERRUPT MANAGEMENT	(04 Hours)
Interrupts and its Types in 8085, Interrupt Vector Table, Priority of Interrupts	, Programming using Interrupts.
8086 ARCHITECTURE	(04 Hours)
8086 Architecture, Pin Out Diagram and its Features, Registers of 8086.	
INSTRUCTION SET OF 8086	(06 Hour)
Data Transfer Instructi ons and Examples based on it, Arithmeti c Instructi Logical Instructi ons, Comparison Instructi ons, Jump Instructi ons, Examples Jump Instructi ons, Various 8086 Assembler Directives, Examples based ves, What are Procedures in 8086?, Procedure-based Examples in 8086.	s based on Logical, Comparison d on Various Assembler Direct
PERIPHERAL & MEMORY INTERFACING WITH 8086	(04 Hour)
Interfacing Peripherals:- 8255A: Examples of Interfacing Keyboard and Seven with Alphanumeric Displays, Examples of Bidirecti onal Data Transfer Betwee 8259A, and 8279 Interfacing with 8086.	
8086 INTERRUPTS MANAGEMENT AND APPLICATIONS	(03 Hour)
8086 Interrupts and Interrupts Responses, Interrupt Pointer Table, Hardware Interrupt Applications.	Interrupt, Software Interrupts,
RECENT TRENDS IN MICROPROCESSORS	(03 Hour)
Practicals will be based on the coverage of the above topics.	(30 Hours)
(Total Contact Time	: 45 Hours + 30 Hours = 75 Hours)

3.	Practicals:
1	Introduction of 8085 kit and Installation 0f 8085 simulator
2	Assembly Language Programming based on Data transfer and Arithmetic and Logic instructions
3	Assembly Language Programming based on Branch operations
4	Assembly Language Programming based on stack and subroutines
5	Assembly Language Programming based on Code conversions

6	Assembly Language Programming based on counter and time delays
7	Introduction of 8086 Microprocessor and Installation of TASM, TLINK, TD, and DEBUG
8	Assembly Language Programming based on 8086 instruction and assembler directives
9	Practical based on 8085 interfacing

4. Books Recommended:

- 1. Senti Ikumar N, Saravanan M and Jeevananthan S, "Microprocessors and Microcontrollers" 2/E, Oxford University Press, 2018..
- 2. Ramesh S. Gaonkar, "Microprocessor Architecture, Programming and Applications with 8085", 6/E, Penram International Publishing (India) Pvt. Ltd., 2013.
- 3. Douglas V Hall, "Microprocessors and Interfacing: Programming & Hardware", 3/E, TMH, 2013
- 4. Brey, "The Intel Microprocessors", 8/E, Pearson Educati on, 2009. Andrew Ilachinski, "Cellular Automata", 1st Ed., World Scientific, 2001.
- 5. A K Ray and K M Bhurchandi, "Advanced Microprocessors & Peripherals: Architecture Programming & Interfacing", 2/E, TMH, 2006.

ADDITIONAL REFERENCE BOOKS

1. Abel Peter and Nizamuddin, "IBM PC Assembly Language and Programming", 5/E, Pearson Education, 2001.

B. Tech. III (AI) Semester – V MACHINE LEARNING		L	Т	P	Credit
Al301	Scheme	3	0	2	04

-	Course Outcomes (COs): At the end of the course, students will be able to				
CO1	acquire knowledge of pattern recognition, regression, classification, clustering algorithms and statistics.				
CO2	apply different classification, regression, machine learning algorithms and modelling.				
CO3	analyze the data patterns and modelling for applying the learning algorithms.				
CO4	evaluate the performance of an algorithm and comparison of different learning techniques.				
CO5	design solution for real life problems like biometric recognition, natural language processing and its related applications using various tools and techniques of machine learning.				

2.	Syllabus		
	INTRODUCTION TO MACHINE LEARNING AND RELATED MATHEMATICS	(08 Hours)	
	Introduction to Machine Learning, Why Machine Learning?, Types, Applications of M/L, Pyth	non libraries for	
	ML, Fundamentals- Scalars, vectors, tensors, Equations, matrix, determinant, norms, kernel,	Eigen values	
	and Eigen vectors, introduction to probability and statistics, stochastic descent		
	DATA SAMPLING, PRE-PROCESSING AND PERFORMANCE EVALUATION	(06 Hours)	
	Data sampling, Data preprocessing, Training, Validation, Testing, Performance Evaluation		
	SUPERVISED LEARNING	(08 Hours)	
	Classification and Regression, Linear Regression, Logistic Regression, k-Nearest Neighbors, N	laive Bayes	
	Classifiers, Decision Trees, Support vector machine, Bagging, Boosting, Recommender system	m	
	ARTIFICIAL NEURAL NETWORKS	(05 Hours)	
	Artificial neural network- Neurons, Multilayered networks, Backpropagation model, RBM, R	ecurrent	
	networks, Applications of Neural Networks		
	UNSUPERVISED LEARNING AND DIMENSIONALITY REDUCTION TECHNIQUES	(07 Hours)	
	Clustering: k-Means Clustering, Density-based clustering, Agglomerative Clustering, Association rules,		
	Dimensionality reduction, Principal Component Analysis, Linear Discriminant Analysis		
	DEEP LEARNING	(05 Hours)	

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Deep Neural Networks, Deep learning models/algorithms: CNN, RNN, Deep belief networks	, Auto-encoders,	
LSTM		
APPLICATIONS	(06 Hours)	
Signal Processing Application, Biometric Recognition, Information Retrieval, Natural Language Processi		
Robotics and other case studies		
(Total Contact Time: 45 Hours+ 30 H	ours = 75 Hours)	

3. Practicals:

- 1. Handle missing values, normalize features, and perform exploratory data analysis (EDA) on a given dataset.
- 2. Implement linear regression using gradient descent and evaluate it using Mean Squared Error (MSE).
- 3. Build a logistic regression model for binary classification and evaluate using accuracy, precision, recall, and F1-score.
- 4. Implement the K-NN algorithm from scratch and evaluate it on a classification dataset.
- 5. Build a decision tree classifier from scratch and visualize the tree after training on a dataset.
- 6. Implement the K-Means algorithm from scratch and apply it for clustering on a given dataset.
- 7. Implement PCA and reduce a high-dimensional dataset to two components, then visualize the data.
- 8. Train a Random Forest classifier on a dataset and evaluate performance with accuracy and confusion matrix
- 9. Build and train a simple feedforward neural network for classification tasks using a deep learning framework.
- 10. ML project development

4. Books Recommended:

- 1. Tom Mitchell, Machine Learning, McGraw-Hill Science/Engineering/Math
- 2. Ian Goodfellow, Yoshua Bengio, Aaaron Courville, Franchis Bach, Deep Learning (Adaptive Computation and Machine Learning series), MIT Press, 2017
- 3. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer, Second edition
- 4. Christopher M. Bishop, "Pattern Recognition and Machine Learning", 1st Edition, Springer, 2006.
- 5. Geoff Dougherty, "Pattern Recognition and Classification: An Introduction", 1st Edition, Springer, 2013.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B. Tech. III (AI) Semester – V DATA SCIENCE	1	L	Т	Р	Credit
A1202	eme 3	3	0	2	04

_	ourse Outcomes (COs):
At end	d of the Course student will be able to
CO1	Understand types of data and various data science approaches.
CO2	Apply various data pre-processing and manipulation techniques including various distributed analysis paradigm using hadoop and other tools and perform advance statistical analysis to solve complex and large dataset problems.
CO3	Analyze different large data like text data, stream data, graph data.
CO4	Interpret and evaluate various large datasets by applying Data Mining techniques like clustering, filtering, factorization.
CO5	Design the solution for the real life applications.

2.	<u>Syllabus</u>				
•	INTRODUCTION	(04 Hours)			
	Examples, Applications and Results Obtained Using Data Science Techniques, Overview of the Data Science Process. Types of Data and Data Representations, Acquire Data, Process and Parse Data, Data Manipulation, Data Cleaning, Exploratory Data Analysis.				
•	STATISTICS FOR DATA SCIENCE				
	The Dimensionality Problem, Singular Value Decomposition (SVD), Principal Component Analysis (PCA), Descriptive and Inferential statistics, Populations and Samples, Hypothesis testing.				
•	PARADIGMS FOR DATA MANIPULATION, LARGE SCALE DATA SET	(08 Hours)			
	Mapreduce (Hadoop), Query Large Data Sets in Near Real Time with Pig and Hive, Moving from Traditional Warehouses to Map Reduce, Distributed Databases, Distributed Hash Tables.				
•	TEXT ANALYSIS	(08 Hours)			

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

	Data Flattening, Filtering and Chunking, Feature Scaling, Shingling of Documents, Locality Sensitive Hashing for Documents, Distance Measures, LSH Families for Other Distance Measures.				
•	MINING DATA STREAM	(06 Hours)			
	Sampling Data in a Stream, Filtering Streams, Counting Distinct Elements in a Stream, Moments, Windows, Clustering for Streams.				
•	ADVANCED DATA ANALYSIS (10 Hours)				
	Link Analysis, Mining of Graph, Frequent Item Sets Analysis, High Dimensional and Hierarchical Clustering, Recommendation Systems, Collaborative filtering. Visualization, Data Summaries, Data Storytelling, ML Model-Checking and Comparison.				
•	CASE STUDIES	(05 Hours)			
	NLP in Customer Service, Energy Consumption analysis, Healthcare diagnostics, fraud detection and other applications.				
	Practicals will be based on the coverage of the above topics separately.	(30 Hours)			
	(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)				

3.	Practicals:
1	Write a Map Reduce program of word count on Hadoop
2	Execute the commands related to HDFS like ls, mkdir, cat etc.
3	Develop association rule mining on product recommendation application.
4	Implement a data stream mining approach, analysis and visualization.
5	To explore and implement time series analysis and its applications.
6	Do detailed data analysis on any medical dataset.
7	Sentiment analysis for Business Applications.
8	Develop a classification model that classify Reddit Posts.
9	Design a system that predicts malicious URL.
10	Develop a recommendation system, such as movie recommendation, product recommendation.

4. Books Recommended:

1. Cathy O'Neil and Rachel Schutt, Doing Data Science: Straight Talk from the Frontline, 1st Edition O'Reilly Media, 2013, ISBN: 978-1449358655

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

- 2. Tom White, "Hadoop: The Definitive Guide", 4th Edition, O'reilly Media, 2015, ISBN: 9781491901687.
- 3. Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", 2nd Edition, Cambridge University Press, 2014, ISBN: 9781107077232.
- 4. Peter Bruce, Andrew Bruce, "Practical Statistics for Data Scientists: 50" by , 1st Edition, O'reilly publishing house, 2017, ISBN: 9781491952962.
- 5. Joel Grus, J. "Data science from scratch", 1st Edition, O'Reilly Media, 2015, ISBN: 9781491901410.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B. Tech. III (AI) Semester – V INFORMATION SECURITY AND CRYPTOGRAPHY		L	Т	P	Credit
Al331	Scheme	3	0	2	04

_	Course Outcomes (COs): At the end of the course, students will be able to					
CO1	understands the key concept and mathematical background of cryptography.					
CO2	apply the concept of security mechanisms from the application developer's perspective.					
CO3	analyse security mechanisms while trying to satisfy the required security services.					
CO4	evaluate different information hiding and authentication techniques.					
CO5	design and develop the security solution depending on the organisation's requirements.					

2.	<u>Syllabus</u>			
	Introduction to Information Security and Cryptography	(03 Hours)		
	Elements of Information Security, Security Attacks, Security Services, Basic T Cryptography, Types, Goals of cryptography	erminology in		
	Data Encryption Techniques			
	Encryption methods, substitution ciphers: The caesar cipher, mono alphabetic cipher, hill cipher, one-time pad cipher, transposition cipher, Shift Cipher, Permutation Cipher, Stream Ciphers, Cryptanalysis			
	Data Encryption and Advanced Encryption Standards	(09 Hours)		
	Block ciphers, festal cipher, data encryption standard, working and cracking of DES, Concept of advanced			

SubjectCode:##nXX;##:DepartmentIdentity,n:Year,XX:SubjectSequencenumberXX:lastdigit0 (subjectofferedinbothODDandEVENsemesters,XX:01to30—lastdigitODDandEVENforODDandEVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects listfor Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4)EG: Engineering Subject,SC:Science Subject(offeredcombinedlyby departments)(SVNITSurat)

CurriculumSVNITSurat(58th Senate,31May2023)

encryption standard, Key generation, encryption and decryption procession of AES, advantages of AES.				
Number Theory	(06 Hours)			
Prime number, Modular arithmetic, Fermat's theorem, Euler's theorem, Chinese remaind	er theorem			
Symmetric Ciphers	(06 Hours)			
Concept of Symmetric cipher, blowfish encryption, RC5, RC4, IDEA				
Public Key cryptosyatem	(06 Hours)			
Public key cryptography, key length and encryption strength, applications of public key cryptography, RSA algorithm				
Key management and Authentication	(07 Hours)			
Diffie-Hellman key exchange, authentication methods, message digest MD2, MD4, MD5, X.509, digital signature	, SHA, kerberos,			
Practicals will be based on the coverage of the above topics separately.	(30 Hours)			
(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)				

3. Practicals:

- 1. Implement a Caesar Cipher to encrypt and decrypt messages by shifting characters.
- 2. Develop a program to implement the Monoalphabetic Cipher for encryption and decryption of text.
- 3. Create a Playfair Cipher encryption and decryption algorithm using digraphs.
- 4. Implement the Hill Cipher for encrypting a message using a 2x2 matrix.
- 5. Write a program for a Shift Cipher that shifts characters by a fixed number for encryption and decryption.
- 6. Implement the Affine Cipher, which involves using mathematical transformations (multiplication and addition) for encryption and decryption.

SubjectCode:##nXX;##:DepartmentIdentity,n:Year,XX:SubjectSequencenumberXX:lastdigit0 (subjectofferedinbothODDandEVENsemesters,XX:01to30—lastdigitODDandEVENforODDandEVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects listfor Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4)EG: Engineering Subject,SC:Science Subject(offeredcombinedlyby departments)(SVNITSurat)

CurriculumSVNITSurat(58th Senate,31May2023)

- 7. Demonstrate the working of DES encryption and decryption using a simple block cipher approach.
- 8. Implement the AES encryption algorithm and compare its performance with DES using different modes (e.g., ECB, CBC).
- 9. Simulate the Diffie-Hellman Key Exchange algorithm to securely share a secret key over an insecure channel.
- 10.Implement MD5 and SHA (e.g., SHA-1, SHA-256) to generate message digests and verify the integrity of messages.

4. Books Recommended:

- 1. Stinson, Douglas R., "Cryptography: theory and practice", 3rd Edition, Chapman and Hall/CRC, 2005.
- 2. Stallings, William, "Cryptography and network security: principles and practice", 7th Edition, Upper Saddle River: Pearson, 2017.
- 3. Forouzan, Behrouz A., "Cryptography & network security", 3rd Edition, McGraw-Hill, Inc., 2007.
- 4. Schneier, Bruce, "Applied cryptography: protocols, algorithms, and source code in C", 2nd Edition, john wiley & sons, 2007.

B. Tech. III (AI) Semester – V GAME THEORY		L	Т	Р	Credit
AI351 Sch	ieme	3	1	0	04

1. (Course Outcomes (COs):						
At the	At the end of the course, students will be able to						
CO1	Learn how individuals and organizations make rational choices in competitive and cooperative environments						
CO2	Explore different types of games, including zero-sum, non-zero-sum, cooperative, and non-cooperative games						
CO3	Study equilibrium concepts to predict and explain strategic interactions in various scenarios.						
CO4	Apply game-theoretic principles to economics, business, politics, social sciences and technology						
CO5	Enhance analytical abilities to model and solve strategic problems effectively						

2.	Syllabus			
	INTRODUCTION TO GAME THEORY	(06 Hours)		
	Definition, scope, applications, types of games (cooperative vs. non-cooperative, zero-sum v	/s. non-zero-		
	sum), basic terminology, strategic interactions in economics and social sciences.			
	STRATEGIC FORM GAMES AND NASH EQUILIBRIUM	(08 Hours)		
	Normal-form representation, dominant and dominated strategies, best response analysis, N	lash		
	equilibrium, mixed strategies, existence and computation of equilibria.			
	EXTENSIVE FORM GAMES AND SUBGAME PERFECTION	(07 Hours)		
	Sequential games, extensive-form representation, backward induction, subgame perfect eq	uilibrium,		
	perfect information vs. imperfect information games, applications in bargaining			
	REPEATED AND STOCHASTIC GAMES	(06 Hours)		
	Infinitely repeated games, folk theorems, strategies for cooperation, stochastic games, Mar	kov strategies,		
	applications in long-term strategic interactions.			
	BAYESIAN GAMES AND INCOMPLETE INFORMATION	(06 Hours)		
	Games with asymmetric information, Bayesian Nash equilibrium, signaling and screening, at	uction theory,		
	mechanism design, applications.			
	COOPERATIVE GAME THEORY AND BARGAINING SOLUTIONS	(06 Hours)		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Core, Shapley value, bargaining games (Nash and Rubinstein models), coalition formation, applications		
business and international negotiations.		
APPLICATIONS AND ADVANCED TOPICS (06 Hours)		
Evolutionary game theory, mechanism design, matching markets, voting and fair division, real-world		
applications in economics, politics, and Al-driven strategy models.		
(Total Contact Time: 45 Hours+ 15 Hours = 60 Hours)		

3. Tutorials:

- 1. Identify and eliminate dominated strategies in normal-form games.
- 2. Compute pure and mixed strategy Nash equilibria using best response analysis.
- 3. Solve sequential games by applying backward induction.
- 4. Analyze long-term strategic interactions and cooperation in infinitely repeated games.
- 5. Solve games where players have private information.
- 6. Study different auction formats and optimal bidding strategies.
- 7. Analyze how coalitions form and distribute payoffs in cooperative games.
- 8. Explore strategic negotiation models and their real-world applications.
- 9. Understand evolutionarily stable strategies (ESS) in dynamic games.
- 10. Apply game-theoretic concepts to business, politics, and cybersecurity.

4. Books Recommended:

- 1. Y. Narahari, "Game Theory and Mechanism Design: 4 (IISc Lecture Notes Series)," World Scientific Publishing Co Pvt Ltd, May 07, 2014, ISBN-13: 978-9814525046
- 2. Anna R. Karlin and Yuval Peres, "Game Theory, Alive," American Mathematical Society, Apr 27, 2017, ISBN-13: 978-1470419820 [Available Online].
- 3. Roger B. Myerson, "Game Theory: Analysis of Conflict," Harvard University Press, September 1997, ISBN-13: 978-0674341159.
- 4. Martin J. Osborne, "An Introduction to Game Theory," Oxford University Press, 2003, ISBN- 13: 978-0195128956.
- 5. D. Fudenberg and J. Tirole, "Game Theory," Indian Edition by Ane Books, 2005, ISBN-13: 978-8180520822.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B. Tech. III (AI) Semester – V INTRODUCTION TO QUANTUM COMPUTING		L	Т	Р	Credit
Al353	Scheme	3	1	0	04

1. (Course Outcomes (COs):			
At the	At the end of the course, students will be able to			
CO1	Understanding Quantum Computing Fundamentals			
CO2	Analyzing Quantum Computing Applications			
CO3	Develop Quantum Circuits Using Qiskit			
CO4	Explore NISQ Era and Industrial Applications			
CO5	Applying Quantum Circuit Models to solve problems			

2.	Syllabus			
	Foundations	(08 Hours)		
	Hilbert spaces (finite dimensional). Axioms of quantum probability. Quantum vs Classical p	probability.		
	IBM Quantum Perspective, Q Mission in India	(08 Hours)		
	IBM Quantum Composer and Quantum Lab using Qiskit, Quantum Computing Application	cations, Quantum		
	Computing Basics,			
	Quantum Computing	(11 Hours)		
	Turing machines, Boolean circuits, Quantum Circuits, Universality. Simon's problem, Phase	finding, Shor's		
	algorithm, Grovers algorithm, Probability amplification. Some applications.			
	Quantum Information processing	(06 Hours)		
	Quantum error correction.Knill-Laflamme theorem, Stabiliser codes	odes		
	Quantum Algorithms	(07 Hours)		
	Oracles, Deustch Jozsa, Grover's Algorithm with Hands-on, etc.			
	Quantum Algorithms for NISQ	(05 Hours)		
	NISQ era Quantum Algorithms for VQE/QAOA and industrial applications			
	Tutorials will be based on the coverage of the above topics separately	(15 Hours)		
	(Total Contact Time: 45 Hours + 15	(Total Contact Time: 45 Hours + 15 Hours = 60 Hours)		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

3. Tutorials:

- 1. Tutorial on Quantum Circuits and Quantum Composer
- 2. Tutorial on the Deutsch-Jozsa Algorithm
- 3. Tutorial on Grover's Search Algorithm
- 4. Tutorial on Shor's Algorithm for Integer Factorization
- 5. Tutorial on Quantum Error Correction Using the Three-Qubit Bit-Flip Code
- 6. Tutorial on the Deutsch-Jozsa Algorithm for Distinguishing Constant and Balanced Functions
- 7. Tutorial on Variational Quantum Eigensolver (VQE) for Finding the Ground State Energy of a Molecule

4. Books Recommended:

- 1. Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2010)
- 2. Eleanor G. Rieffel, Wolfgang H. Polak, Quantum Computing: A Gentle Introduction (Scientific and Engineering Computation), MIT Press (2014)
- 3. Hiu Yung Wong, Introduction to Quantum Computing: From a Layperson to a Programmer, Springer Nature
- 4. Qiskit Textbook: https://qiskit.org/textbook/preface.html

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B. Tech. III (AI) Semester – V HUMAN COMPUTER INTERACTION	L	Т	Р	Credit
AI355 Scheme	3	0	2	04

1. (1. Course Outcomes (COs):				
At th	At the end of the course, students will be able to				
CO1	Understand the history of HCI, human abilities, interaction styles, and computing paradigms.				
CO2	Apply usability concepts and prototyping techniques to design user-friendly GUIs.				
CO3	Implement HCI guidelines like Shneiderman's rules, Norman's principles, and Nielsen's heuristics for system evaluation.				
CO4	Design dialog systems using FSMs, Petri nets, and model-based techniques like GOMS and Fitts' law.				
CO5	Conduct HCI experiments, task modeling (HTA, CTT), and data analysis to improve system usability.				

2.	Syllabus			
	HCI foundation	(03 Hours)		
	history, human abilities, state of the art in computing technology, interaction styles and par	adigms		
	Interactive system design	(05 Hours)		
	Concept of usability definition and elaboration, HCI and software engineering, GUI design and Prototyping techniques	nd aesthetics,		
	Guidelines in HC	(08 Hours)		
	Shneiderman's eight golden rules, Norman's seven principles, Norman's model of interactio	n, Nielsen's ten		
	heuristics with example of its use, Heuristic evaluation, Contextual inquiry, Cognitive walkth	hrough		
	Dialog Design	(05 Hours)		
	Introduction to formalism in dialog design, design using FSM (finite state machines), State of	charts and		
	(classical) Petri Nets in dialog design			
	Model-based Design and evaluation	(08 Hours)		
	Basic idea, introduction to different types of models, GOMS family of models (KLM and CMN	I-GOMS), Fitts'		
	law and Hick Hyman's law, Model-based design case studies			
	Cognitive architecture, and Design -Case Studies	(08 Hours)		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Introduction to CA, CA types, relevance of CA in IS design, Model Human Processor (MHP), (Case Study 1-
Multi Key press Hindi Text Input Method on a Mobile Phone, Case Study 2 - GUI design for a	mobile phone
based Matrimonial application, Case Study 3 Employment Information System for unorganis	sed construction
workers on a Mobile Phone.	
Empirical research methods in HCI and task modeling and analysis	(08 Hours)
Introduction (motivation, issues, research question formulation techniques, Experiment des	sign and data
analysis (with explanation of one-way ANOVA), Hierarchical task analysis (HTA), Engineering	g task models
and Concur Task Tree (CTT)	
Practicals will be based on the coverage of the above topics separately	(30 Hours)
(Total Contact Time: 45 Hours + 30 H	ours = 75 Hours)

3. Practicals:

- 1. Practical Based on Evaluating the Usability of a GUI Prototype Using Heuristic Evaluation
- 2. Practical Based on Heuristic Evaluation of a Mobile Application
- 3. Designing a Dialogue System Using Finite State Machines (FSM) and State Charts
- 4.Practical Based on Evaluating User Task Performance Using Fitts' Law and Keystroke-Level Model (KLM) from the GOMS Family
- 5. Experiment on the Analysis of Multi-Key Press Hindi Text Input Method Using Model Human Processor (MHP)
- 6. Practical Based on Cognitive Analysis and GUI Design for a Mobile-Based Matrimonial Application
- 7. Experiment Design and Data Analysis Using One-Way ANOVA
- 8. Practical Based on Hierarchical Task Analysis (HTA) and Modeling with Concur Task Tree (CTT)

4. Books Recommended:

- 1. Dix A., Finlay J., Abowd G. D. and Beale R. Human Computer Interaction, 3rd edition, Pearson Education, 2005.
- 2. Preece J., Rogers Y., Sharp H., Baniyon D., Holland S. and Carey T. Human Computer Interaction, Addison-Wesley, 1994.
- 3. B. Shneiderman; Designing the User Interface, Addison Wesley 2000 (Indian Reprint).
- 4. J. M. Caroll (ed.), HCI Models, Theories and Frameworks: Towards a Multidisciplinary Science (Interactive Technologies), Morgan Kauffman, 2003.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B. Tech. III (AI) Semester – V NATURAL LANGUAGE PROCESSING	L	Т	Р	Credit
Al357 Scheme	3	0	2	04

_	Course Outcomes (COs): e end of the course, students will be able to
CO1	Understand the fundamental concepts of NLP and its applications.
CO2	Understand and Implement text preprocessing techniques (tokenization, stemming, lemmatization, etc.).
CO3	Apply various feature engineering, word embeddings, and other deep learning methods for NLP tasks.
CO4	Build and evaluate NLP models for text classification, information extraction, and sequence to sequence modeling tasks
CO5	Utilize NLP tools and libraries (NLTK, spaCy, scikit-learn, transformers, Pytorch, HuggingFace)
CO6	Design and implement a complete NLP project.

2.	<u>Syllabus</u>	
	Introduction to NLP	(05 Hours)
	What is NLP? History and applications of NLP, Challenges in NLP, NLP pipeline, Basic language	e processing:
	Regular expressions, finite state automata and its applications	_
	Text Preprocessing	(07 Hours)
	Tokenization, stemming, and lemmatization, Stop word removal, Handling noisy text, n-gram	n Language
	Model, Smoothing Techniques	_
	Representations for NLP	(08 Hours)
	Bag of Words (BoW), TF-IDF, N-grams, Word embeddings: Word2Vec, GloVe, FastText, Cont	extualized word
	embeddings: BERT, RoBERTa, Unsupervised Word Embeddings	
	Text Classification	(08 Hours)

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat

Department of Artificial Intelligence B.Tech. Artificial Intelligence

ML Approaches (Naive Bayes, Support Vector Machines (SVMs), Logistic Regression, Decision	n Trees and				
Random Forests, Multi-Layer Perceptron), Deep Learning approaches using contextual embe	eddings,				
different text classification tasks, Evaluation metrics: Accuracy, precision, recall, F1-score.					
Sequence Labeling Tasks	(08 Hours)				
Part-of-Speech (POS) tagging, Chunking, Constituency and Dependency Parsing, Named Enti (NER), Relation extraction, Shallow Parsing, Multi-Task Learning, Evaluation metrics for sequ					
tasks	ence prediction				
Sequence-to-Sequence Modeling	(09 Hours)				
Recurrent Neural Networks (RNNs), LSTMs, GRUs, Encoder-decoder architecture, Attention mechanisms,					
Beam search, transformers, encoder-only and decoder-only models, Applications: Machine t	ranslation, Text				
summarization, Question and Answering, Evaluation metrics used for MT, Summarization, a	nd Q&A				
Practicals will be based on the coverage of the above topics separately.	(30 Hours)				
(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)					

3. Practicals:
1. Text Preprocessing
2. Feature Engineering and different text representations
3. Build and evaluate text classification models using ML and DL approaches
4. Perform POS tagging, NER, and other syntactic analysis using spaCy/Stanza
5. Implement Sequence Labeling models using HMM, MEMM, CRF, Seq2Seq models
6. Implement a sequence-to-sequence model for different task using various architectures
7. Develop a complete NLP project (e.g., spam detection, news article classification, chatbot).

4. Books Recommended:

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat

Department of Artificial Intelligence B.Tech. Artificial Intelligence

- 1. Speech and Language Processing, Daniel Jurafsky and James H. Martin
- 2. Natural Language Processing with Transformers, Lewis Tunstall, Leandro von Werra, Thomas Wolf
- 3. Natural Language Processing with Python by Bird, Klein, and Loper
- 4. Natural Language Processing, Pushpak Bhattacharyya, Aditya Joshi
- 5. Practical Natural Language Processing, Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, Harshit Surana, O'Reilly Media, Inc.
- 6. Online Tutorials: Hugging Face, PyTorch, Sklearn, Stanza, NLTK, Spacy
- 7. Latest research papers from top tier conferences (ACL, NEURIPS, AAAI, NAACL, COLING, CONLL, SIGIR, IJCNLP, LREC)

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

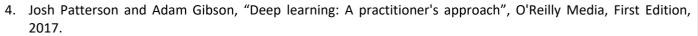
B. Tech. III (AI) Semester-VI DEEP LEARNING	L	Т	Р	Credit
Al302 Scher	е 3	0	2	4

	Course Outcomes (COs):					
At the	At the end of the course, students will be able to					
CO1	Identify problems that could be solved using Deep learning.					
CO2	Understand major components and key concepts of CNN, RNN, GAN, and Transformers.					
CO3	Understand recent advancements in GANs.					
CO4	Analyze and apply deep learning models for image and text tasks.					
CO5	Design applications of Deep learning in Pytorch and Keras.					

2.	<u>Syllabus</u>				
	Introduction to Deep learning	(09 Hours)			
	Motivation and History of Deep Learning, Overview of Applications (e.g., Vision, Speech, NLI learning, Unsupervised learning, Reinforcement learning, Artificial Neural Networks (ANNs) network, From fully Connected Layers to Convolutions, Convolutions for images, Padding an Pooling, Activation Functions: Sigmoid, ReLU, Tanh, Forward and Backpropagation Algorithm Neural Networks (LeNet) and floating point operations (FLOP), Gradient Descent, Optimization Deep learning, Weight Initialization and Regularization Techniques, Hyperparameter Tuni Rate, Batch Size), Overfitting and Underfitting	,Shallow neural d Stride, ns, Convolution on Algorithms			
	Modern Convolution Neural Networks	(05 Hours)			
	Deep Convolution Neural Networks (AlexNet), Network using Blocks (VGG), Network in Network in Networks (GoogLeNet), BatchNormalization, Layer Normalization, Instance Notwork (Group Normalization, Residual Networks (ResNet), Densely Connected Network (DenseNet) Learning and Fine-Tuning, Applications: Image Classification, Object Detection.	rmalization,			
	Modern Recurrent Neural Networks	(08 Hours)			
	Working with sequences, Converting Raw Text into Sequence Data, Basic of Language models, Recurrent Neural Networks, Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), Deep Recurrent Neural Networks, Bidirectional Recurrent Neural Networks, Applications: Text Generation, Sentiment Analysis				
	Introduction to Generative Modeling	(08 Hours)			

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Generative modeling, Auto-encoder, Variational Auto encoders (VAE), Generative	Adversarial Networks
(GANs), GAN Training and loss function, GAN Challenges, Mode Collapse, Variants	of GANs (DCGAN, cGAN,
WGAP,WGAN-GP), Applications: Image Synthesis, Style Transfer	
Applications of GANs and Advanced Topics	(06 Hours)
Image-to-Image Translation (pix2pix), Neural Style Transfer (Style GAN), Face Man	nipulation,
Superresolution, Inpainting, Image Segmentation, future of Generative Modeling,	Explainable AI (XAI)
Introduction to Transformers and its Applications	(09 Hours)
Attention Mechanisms, Natural Language, Transformer Language Models, Sequen	ice-to-Sequence
transformers, Vision Transformers. Text classification, Question Answering, Transl	lation, Text Generation,
future of Transformers, Applications: Machine Translation, BERT, GPT	
/= · · · · · · · · · · · · · · · · · · ·	
(Total Contact Time: 45 Hou	urs +30 Hours = 75 Hours)


3. Practicals:

- 1. Basic Programming on deep learning frameworks Pytorch/Keras deep learning frameworks
- 2. Image classification using difference CNN architecture in Pytorch/Keras.
- 3. Transfer Learning of pretrained models on MNIST dataset.
- 4. Time-Series Forecasting with the LSTM Model in Pytorch/Keras.
- 5. Deep learning Techniques for image segmentation in Pytorch/Keras.
- 6. Autoencoders using MNIST Handwritten digits in Pytorch/Keras.
- 7. GAN for generating synthetic image on MNIST Handwritten digits dataset.
- 8. DCGAN for generating synthetic image on CIFAR dataset.
- 9. Text classification using Transformer and Fine-tune a pre-trained Transformer (e.g., BERT) for sentiment analysis.
- 10. Minor Project on classification and synthetic image generation and Deploy a trained DL model as a REST API using Flask.

4. Books Recommended:

- 1. Dive into Deep Learning: Book by Aston Zhang, Zack C. Lipton, Mu Li, Alex J. Smola.
- 2. Deep Learning. Book by Ian Goodfellow and Yoshua Bengio and Aaron Courville, The MIT
- 3. Deep Learning Foundations and Concepts, Book by, Christopher M. Bishop, Hugh Bishop

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

5.	Seth Weidman, Deep Learning	from Scratc	h: Building wit	:h Python i	from First Principles, O'Reilly
----	-----------------------------	-------------	-----------------	-------------	---------------------------------

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B. Tech. III (AI) Semester – VI CLOUD COMPUTING		L	Т	P	Credit
Al304 Schem	•	3	0	2	04

1. (1. Course Outcomes (COs):					
At the	At the end of the course, students will be able to					
CO1 Explain the core concepts of the cloud computing paradigm: how and why this par came about, the characteristics, advantages and challenges brought about by the models and services in cloud computing.						
CO2	Apply the fundamental concepts in datacenters to understand the tradeoffs in power, efficiency and cost.					
CO3	Identify resource management fundamentals, i.e. resource abstraction, sharing and sandboxing and outline their role in managing infrastructure in cloud computing.					
CO4	Analyze various cloud programming models and apply them to solve problems on the cloud.					
CO5	Will understand cloud security concepts, identify risks, and apply security measures to protect cloud environments.					

2.	Syllabus	
	OVERVIEW OF COMPUTING PARADIGM AND INTRODUCTION TO CLOUD COMPUTING	(06 Hours)
	Recent trends in computing, evolution of cloud computing, Cloud computing (NIST model),	properties,
	characteristics and disadvantages, role of open standards.	
	CLOUD COMPUTING ARCHITECTURE	(05 Hours)
	Cloud computing stack, Service models (XAAS), Deployment models.	
	INFRASTRUCTURE AS A SERVICE	(05 Hours)
	Introduction, Hypervisors, Resource virtualization, examples.	<u> </u>
	PLATFORM AND SOFTWARE AS A SERVICE	(08 Hours)
	Introduction, Cloud Platform and Management, Web services, Web 2.0, Web OS examples.	
	SERVICE MANAGEMENT IN CLOUD COMPUTING	(06 Hours)
	Service Level Agreements (SLAs), Billing & Accounting, comparing scaling hardware, econom	nics of scaling,
	managing data.	
	CLOUD SECURITY	(07 Hours)

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Infrastructure security, Data security and storage, Identity and Access Management, Access Control, Trust	
and Reputation, Authentication in Cloud computing.	
CASE STUDY ON OPEN SOURCE AND COMMERCIAL CLOU	OS (08 Hours)
Eucalyptus, VMware Cloud and Other case studies	
Practicals will be based on the coverage of the above top	cs separately (30 Hours)
(Tota	al Contact Time: 45 Hours + 30 Hours = 75 Hours)

3. Practicals:
1. Evaluation of Platform as a Service
2. Development and Deployment of Software as a Service
3. Exploration of Service Management in Cloud Computing
4. Study of Cloud Backup and Disaster Recovery
5. Analysis of Cloud Cost Optimization
6. Implementation of Infrastructure and Data Protection
7. Configuration of identity, Access Control and Authentication in Cloud Computing
8. Installation and management of Eucalyptus Cloud
9. Configuration and deployment of VMware Cloud

4. Books Recommended:

- 1. Barrie Sosinsky: "Cloud Computing Bible", Wiley-India, 2010
- 2. Rajkumar Buyya, James Broberg, Andrzej M. Goscinski: "Cloud Computing: Principles and Paradigms", Wiley, 2011
- 3. Nikos Antonopoulos, Lee Gillam: "Cloud Computing: Principles, Systems and Applications", Springer, 2012
- 4. Ronald L. Krutz, Russell Dean Vines: "Cloud Security: A Comprehensive Guide to Secure Cloud Computing", Wiley-India, 2010
- 5. Tim Mather, Subra Kumara swamy, Shahed Latif, Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance, O'Reilly Media, 2009.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B. Tech. III (AI) Semester-VI REINFORCEMENT LEARNING	L	Т	Р	Credit
Al332 Scheme	3	0	2	4

1. <u>C</u>	Course Outcomes (COs):				
At the	At the end of the course, students will be able to				
CO1	Develop a clear understanding of the foundational concepts in RL, such as agents, environments, states, actions, rewards, and policies.				
CO2	Learn to model decision-making problems as Markov Decision Processes (MDP).				
CO3	Explore advanced algorithms like Deep Q-Networks, Policy Gradient methods, and Actor-Critic models.				
CO4	Explore the integration of RL with deep learning to solve high-dimensional and complex problems.				
CO5	Apply RL techniques to simulate and solve real-world problems in various domains, such as games, robotics, and finance.				

2.	<u>Syllabus</u>	
	Introduction to Reinforcement Learning	(06 Hours)
	Introduction: Origin and history of Reinforcement Learning research. Its connections with of fields and with different branches of ML. Probability Basics: - Axioms of probability, concept variables, PMF, PDFs, CDFs, Expectation. joint and multiple random variables, joint, conditionarginal distributions. Correlation and independence.	s of random
	Markov Decision Processes (MDP)	(06 Hours)
	Markov Decision Process Introduction to RL terminology, Markov property, Markov chains, process (MRP). Bellman equations for MRPs. Markov decision process (MDP), state and action functions, Bellman expectation equations, optimality of value functions and policies, Bellman equations.	on value
	Dynamic Programming (DP)	(06 Hours)
	Prediction and Control by Dynamic Programing dynamic programing definition and formulat in MDPs, principle of optimality, iterative policy evaluation, policy iteration, value iteration, policy evaluation and value iteration algorithms, DP extensions.	
	Monte Carlo (MC) Methods	(06 Hours)
	Basics of Monte Carlo Methods, First-visit vs. Every-visit MC, model free RL, Monte Carlo co and off policy learning, Importance sampling, Monte Carlo for control: Exploring starts and 8	

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

methods.		
Temporal Difference (TD) Learning	(06 Hours)	
Incremental Monte Carlo Methods for Model Free Prediction, Overview TD(0), TD(1) and	nd TD(λ), k-step	
estimators, unified view of DP, MC and TD evaluation methods, TD Control methods - Sand their variants.	ARSA, Q-Learning	
Function Approximation Methods	(09 Hours)	
Getting started with the function approximation methods, Revisiting risk minimization, from Machine Learning, Gradient MC and Semi-gradient TD(0) algorithms, Eligibility traapproximation, Afterstates, Control with function approximation, Least squares, Experie Q-Networks. Deep-Reinforcement Learning Need and Applications, Types of Deep-RL: I (DQN), Policy Gradient [Advantage Actor-Critic (A2C/A3C), DDPG, PPO], Alpha zero	ce for function ence replay in deep	
Policy Gradients	(06 Hours)	
Getting started with policy gradient methods, Log-derivative trick, Naive REINFORCE algorithm, bias and variance in Reinforcement Learning, Reducing variance in policy gradient estimates, baselines, advantage function, actor-critic methods.		
(Total Contact Time: 45 Hours +3	0 Hours = 75 Hours)	

3. Practicals:

1. RL Basics

Goal: Understand the RL problem and simulate basic environments.

Activity: Use OpenAI Gym to explore environments like CartPole and FrozenLake.

2. Solving MDPs

Goal: Implement and solve MDPs using Dynamic Programming.

Activity: Write Python scripts for Policy Iteration and Value Iteration.

3. Monte Carlo Methods

Goal: Apply Monte Carlo methods for policy evaluation.

Activity: Implement First-visit and Every-visit Monte Carlo methods in a custom environment.

4. TD Learning

Goal: Explore TD methods for prediction and control.

Activity: Implement SARSA and Q-learning on the FrozenLake environment.

5. Deep Reinforcement Learning (DQN)

Goal: Introduce neural networks for approximating value functions.

Activity: Implement DQN for solving the CartPole environment.

6. Policy Gradients

Goal: Explore policy-based methods.

Activity: Implement the REINFORCE algorithm in a simple RL environment

7. Actor-Critic Goal: Combine value-based and policy-based methods.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Activity: Implement an Actor-Critic algorithm for a continuous action-space problem

8. RL Applications

Goal: Apply RL to solve a real-world problem.

Activity: Train an RL agent for a custom-designed environment or game.

9. Multi-agent RL

Goal: Introduce multi-agent interaction dynamics.

Activity: Simulate a multi-agent RL problem using the PettingZoo library.

10. Capstone Project

Goal: Develop a full-fledged RL application.

Activity: Design and train an RL agent for a complex problem (e.g., a custom robotics task or game).

4. Books Recommended:

- 1. Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, 2n Edition MIT Press
- 2. Marco Wiering and Martijn van Otterlo, Eds , Reinforcement Learning: State-of-the-Art, Springer Science & Business Media ,2012
- 3. Deep Reinforcement Learning Hands-On, 2nd Edition by Maxim Lapan, 2018.
- 4. Reinforcement Learning with OpenAI Gym" by Alessio Stalla
- 5. Hands-On Reinforcement Learning with Python by Sudharsan Ravichandiran

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B. Tech. III (AI) Semester – VI ROBOTICS AND ITS APPLICATIONS		L	Т	Р	Credit
Al352	Scheme	3	0	2	04

_	1. <u>Course Outcomes (COs):</u> At the end of the course, students will be able to				
CO1	Apply fundamental principles of mathematics, science, and engineering to analyze and model robotic systems.				
CO2	Design and implement robot control algorithms for various robotic tasks.				
CO3	Utilize computer vision and machine learning techniques for robot perception and navigation.				
CO4	Evaluate and select appropriate robotic systems for specific applications.				
CO5	Develop and execute robot programs in simulation and/or on physical robotic platforms.				
CO6	Analyze the ethical and societal impact of robotics and AI.				

2.	Syllabus	
	Introduction	(05 Hours)
	What is a robot? History and evolution of robotics, Types of robots: Industrial, service, mobi	le, etc.
	Basic components of a robot: Manipulators, actuators, sensors, control systems, Application	s of robotics in
	various fields: Manufacturing, healthcare, exploration, etc., Introduction to Robot Operating	System (ROS).
	Robot Kinematics	(08 Hours)
	Coordinate frames and transformations, Forward kinematics: Denavit-Hartenberg (DH) paral	meters, Inverse
	kinematics: Analytical and numerical solutions, Jacobian matrix and singularities, Mobile rob	oot kinematics:
	Differential drive, Ackermann steering.	
	Robot Dynamics	(07 Hours)
	Lagrangian mechanics, Equations of motion for robots, Inertia matrices and dynamic models	, Force and
	torque analysis, Robot simulation.	

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat

Department of Artificial Intelligence B.Tech. Artificial Intelligence

Robot Control	(08 Hours)	
Control system fundamentals: Feedback control, PID control, Robot arm control: Joint space control,		
operational space control, Mobile robot control: Path following, trajectory tracking, Adaptiv	ve control and	
learning control (brief introduction)		
Robot Perception	(07 Hours)	
Introduction to computer vision: Image processing, feature extraction, 3D vision: Depth ser	ising, stereo	
vision, Object recognition and tracking, Sensor fusion		
Robot Planning	(05 Hours)	
Path planning: Search algorithms (A*, Dijkstra's), sampling-based methods (RRT), Motion pl	anning:	
Trajectory generation, obstacle avoidance, Task planning: Hierarchical planning, task decom	position	
AI in Robotics	(05 Hours)	
Introduction to machine learning for robotics, Reinforcement learning for robot control and	navigation,	
Natural language processing for human-robot interaction, Ethical and societal implications	of AI in robotics	
Practicals will be based on the coverage of the above topics separately.	(30 Hours)	
(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)		

3. Practicals:
1. Introduction to ROS and Robot Simulation
2. Robot Kinematics and Control
3. Computer Vision for Robotics
4. Robot Navigation and Planning
5. Robot Programming and Applications
6. Integrating different modules (perception, planning, control)
Frameworks: ROS (Robot Operating System), Gazebo (Robot Simulator), OpenCV (Computer Vision Library), PyTorch

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

4. Books Recommended:

- 1. Introduction to Robotics: Mechanics, Control, and Design by John J. Craig
- 2. Robotics: Modelling, Planning and Control by Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo
- 3. Robot Dynamics and Control by Mark W. Spong, Seth Hutchinson, and M. Vidyasagar
- 4. Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox
- 5. ROS for Robotics Programming by Lentin Joseph

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B. Tech. III (AI) Semester – VI RESPONSIBLE AI	L	Т	Р	Credit
Al354 Scheme	3	0	2	04

1. (1. Course Outcomes (COs):					
At the	At the end of the course, students will be able to					
CO1	Understand the fundamental concepts of Responsible AI					
CO2	Understand the concept of fairness, privacy, and bias in Al					
CO3	Understand different kinds of risks and ways to mitigate them					
CO4	Understand the explainability of AI systems					
CO5	Apply Responsible AI techniques to different use cases					

2.	<u>Syllabus</u>				
	Introduction	(05 Hours)			
	Recent AI Capabilities Improvement, imminent risks from AI Models: Toxicity, bias, goal miss	pecification,			
	adversarial examples etc., Long-term risks from Al Models: Misuse, Misgeneralization, Rogu	e Artificial			
	General Intelligence				
	Principles of Response AI (RAI) (05 Ho				
	Transparency, Accountability, Safety, Robustness and Reliability, Privacy and Security, Fairness and non-discrimination, Human-Centred Values, Inclusive and Sustainable development, Interpretability				
	Types of Risks and Mitigation Strategies (08 Ho				
	Recap of Deep Learning Techniques, Language/Vision Models, Al Risks for Gen models, Adve	rsarial Attacks –			
	Vision, NLP, Superhuman Go agents, ML Poisoning Attacks like Trojans, Implications for curre	nt and future			
	Al safety, Mitigation Techniques				
	Explainability of Al Systems (07 Hou				
	Explainability, Imminent and Long-term potential for transparency techniques, Mechanistic Interpretability,				
	Representation Engineering, model editing and probing, Critiques of Transparency for AI Safety				

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat

Department of Artificial Intelligence B.Tech. Artificial Intelligence

Privacy and Fairness	(06 Hours)	
Privacy & Fairness in AI, Breaches of Data Privacy, Algorithmic Bias and Discrimination, Surve	eillance and	
Tracking, Lack of Transparency, Data Security Vulnerabilities, Overcoming Challenges and Saf	feguarding	
Privacy in Al		
Evaluation Metrics and Regulations	(07 Hours)	
Metrics and Tools for RAI - measuring bias/fairness, adversarial testing, explanations		
(LIME/SHAP/SailencyMap/CAM/GradCam), audit mechanisms, Regulation landscape - DPDF	act (India),	
GDPR (EU), EU AI act, US presidential declaration, Ethical approvals, informed consent, participatory design		
future of work, Indian context		
RAI Use Cases	(07 Hours)	
RAI in Legal, Health care, Education and other domains, Policy issues in RAI		
Practicals will be based on the coverage of the above topics separately.	(30 Hours)	
(Total Contact Time: 45 Hours + 30 Hours	urs = 75 Hours)	

3. Practicals:	
1. Introduction to Responsible AI & Bias Detection	
2. Fairness Metrics and Mitigation Techniques	
3. Explainable AI (XAI)	
4. Privacy and Security in Al	
5. Transparency and Accountability	
6. Human-Centered AI and User Trust	

4. Books Recommended:		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat

Department of Artificial Intelligence B.Tech. Artificial Intelligence

- 1. Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way, Springer, Virginia Dignum
- 2. The Cambridge Handbook of Responsible Artificial Intelligence, Silja Voeneky et al.
- 3. The Oxford Handbook of Ethics of AI, Markus D. Dubber et al.
- 4. Latest research papers from top tier conferences (ACL, AAAI, TACL etc.)

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B. Tech. III (AI) Semester – VI HIGH PERFORMANCE COMPUTING	L	Т	Р	Credit
Al356 Scheme	3	0	2	04

_	<u></u>							
At the	At the end of the course, students will be able to							
CO1	Learn concepts, issues and limitations related to parallel computing architecture and software development.							
CO2	Apply different parallel models of computation, parallel architectures, interconnections and various memory organization in modern high performance architectures.							
CO3	Analyze the algorithms to map them onto parallel architectures for parallelism.							
CO4	Evaluate the performance of different architectures and parallel algorithms with different aspects of real time problems.							
CO5	Design parallel programs for shared-memory architectures and distributed-memory architectures using modern tools like OpenMP and MPI, respectively for given problems.							

2.	<u>Syllabus</u>				
	PARALLEL PROCESSING CONCEPTS	(08 Hours)			
	Levels of Parallelism (Instruction, Transaction, Task, Thread, Memory, Function), Models (SIMD, MIMD,				
	SIMT, SPMD, Dataflow Models, Demand-driven Computation etc.), Architectures: N wide Su	perscalar			
	Architectures, Multi-core, Multi-threaded.				
	FUNDAMENTAL DESIGN ISSUES IN PARALLEL COMPUTING	(06 Hours)			
	Synchronization, Scheduling, Job Allocation, Job Partitioning, Dependency Analysis, Mapping Parallel				
	Algorithms onto Parallel Architectures, Performance Analysis of Parallel Algorithms.				
	FUNDAMENTAL LIMITATIONS FACING PARALLEL COMPUTING (06				
	Bandwidth Limitations, Latency Limitations, Latency Hiding/Tolerating Techniques and their	Limitations,			
	Power-Aware Computing and Communication, Power-Aware Processing Techniques, Power-	Aware Memory			
	Design, Power-Aware Interconnect Design, Software Power Management				
	PARALLEL PROGRAMMING	(11 Hours)			
	Programming Languages and Programming-Language Extensions for HPC, Inter-Process Communication,				
	Synchronization, Mutual Exclusion, Basics of Parallel Architecture, Parallel Programming Parallel				
	Programming with OpenMP and (Posix) Threads, Message Passing with MPI.				

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

PARALLEL PROGRAMMING WITH CUDA	(10 Hours)
Processor Architecture, Interconnect, Communication, Memory Organization, and Program	ming Models in
High Performance Computing Architectures: (Examples: IBM CELL BE, Nvidia Tesla GPU, Int	el Larrabee
Micro architecture and Intel Nehalem Micro architecture), Memory Hierarchy and Transact	ion Specific
Memory Design, Thread Organization.	
ADVANCED TOPICS	(04 Hours)
Petascale Computing, Optics in Parallel Computing, Quantum Computers.	l
Practicals will be based on the coverage of the above topics separately	(30 Hours)
(Total Contact Time: 45 Hours + 30 H	lours = 75 Hours)

3. Practicals:

- 1. Practical to implement and analyze matrix multiplication using task and thread-level parallelism on a multicore processor.
- 2. To implement an edge detection algorithm (e.g., Sobel filter) using CUDA, leveraging SIMT architecture and memory-level parallelism.
- 3. Practical to implement the classic producer-consumer problem using semaphores to manage synchronization between multiple threads.
- 4. To implement parallel merge sort using task-based parallelism and analyze task dependencies and performance.
- 5. To evaluate how power-aware processing techniques (like Dynamic Voltage and Frequency Scaling DVFS) affect CPU performance, energy consumption, and latency under different workloads.
- 6. Practical to implement parallel matrix multiplication using OpenMP, demonstrating the concepts of parallelism, synchronization, and mutual exclusion in shared-memory systems.
- 7. Practical Based on Distributed Sorting Using MPI
- 8. Practical to analyze the performance of CUDA cores by implementing a parallel vector addition algorithm, focusing on thread organization, memory hierarchy (global, shared, and register memory), and communication within GPU threads

4. Books Recommended:

- 1. John L. Hennessy and David A. Patterson, "Computer Architecture -- A Quantitative Approach", 5th Edition, Morgan Kaufmann Publishers, 2017, ISBN 13: 978-0-12-383872-8.
- 2. Barbara Chapman, Gabriele Jost and Ruud van der Pas, "Using OpenMP: portable shared memory parallel programming", The MIT Press, 2008, ISBN-13: 978-0-262-53302-7.
- 3. Pacheco S. Peter, "Parallel Programming with MPI", Morgan Kaufman Publishers, 1992, Paperback ISBN: 9781558603394.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

- 4. Marc Snir, Jack Dongarra, Janusz S. Kowalik, Steven Huss-Lederman, Steve W. Otto, David W. Walker, "MPI: The Complete Reference, Volume2", The MIT Press, 1998, ISBN: 9780262571234.
- 5. Pacheco S. Peter, "Parallel Programming with MPI", Morgan Kaufman Publishers, 1992, Paperback ISBN: 9781558603394.
- 6. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech. III (AI) Semester – VI BIG DATA ANALYSIS & VISUALIZATION		L	Т	Р	Credit
Al358	Scheme	3	0	2	04

1.	Course Outcomes (COs): At the end of the course, students will be able to
CO1	To learn the basics of big data, its characteristics, big data management issues, processing and applications with the help of big data platforms and storage models for big data management
CO2	To learn the management and analysis of big data using technology like Hadoop, NoSql, MapReduce, PIG & HIVE
CO3	To apply the data mining algorithms on big data for scalability of the real time applications.
CO4	To develop research interest towards advances in data mining by analyzing the available approaches with the help of evaluating parameters.
CO5	To Visualize big data to perform decision making in real world problems

2.	Syllabus				
	INTRODUCTION	(04 Hours)			
	Definition of Big Data, Source of Big Data, Convergence of Key Trends, Unstructured Da Industry Examples of Big Data, Web Analytics, Fraud and Risk Associated with Big Data, Cre Risk Management, Big Data in Algorithmic Trading, Healthcare, Medicine, Marketing a Advertising, Big Data Technologies, Introduction to Hadoop and Spark, Open Sour Technologies, Cloud, Mobile Business Intelligence, Crowd Sourcing Analytics, Inter and Traffirewall Analytics.				
	BIG DATA ANALYTICS	(06 Hours)			
	Big Data Processing: Batch Data Processing and Stream Data Processing Environments for Big Data Analytics, Implementation of Batch and Real Time Ever Integration of Disparate Data Stores/Data Lake, Mapping Data to the Programmin Connecting and Extracting Data from Storage, Transforming Data for Processing, Connecting Connecting Data from Storage, Transforming Data for Processing, Connecting Data from Storage, Transforming Data for Processing	nt Processing: g Framework,			
	DISTRIBUTED FILE SYSTEM HADOOP	(08 Hours)			
	Introduction, HDFS Daemons, Different Methods to HDFS Access, Hadoop, Featur File System Features, Phases involved in Map Reduce, Architecture, Execution of Jobs, Monitoring the progress of job flows, Building Blocks of Hadoop MapReduce format, Analyzing data with Hadoop, Scaling Out, Hadoop Streaming, Hadoop Pip	MapReduce e. Data			

B.Tech. Artificial Intelligence

Practicals will be based on the coverage of the above topics. (Total Contact Time: 45 Hours + 30 Hou	(30 Hours
Visual Story Telling, Messaging, Effective Presentations, Design for Information and Arts, Visualization Systems, Database Visualization, Redesign Principles Dimensionality, Rapidly Prototype Visualizations, Quantitatively and Qualitatively Visualizations. Visual Story Telling, Messaging, Database Visualization, Rapid Visualizations, Quantitatively and Qualitatively Evaluation of Visualizations, Visualisation Tools, Excel, R, Tableau, Python	s and Design Evaluation odly Prototypo
DATA VISUALISATION FORMAT, CATEGORY AND TOOLS	(06 Hours)
Data Visualization, Design, Data and Tasks, Data Types, Dataset Types, Basic Char Use of Statistical Indicators, Multivariate Data Visualization, Principles of Percept Design, and Evaluation, Graphical Integrity, Data-Ink Ratio, Aspect Ratios & Scales Formats-Static Graphs, Interactive Graphs, Infographics, Websites, Animated Vide Strategies-Qualitative and Text-Based Data, Color-Coding, Timelines, Calendars, Filtering, Parallel Coordinates, Aggregation.	ion, Color, s. eos, GIFs.
INTRODUCTION TO DATA VISUALIZATION	(05 Hours)
Introduction, NoSQL Databases, Need, Types, Comparison with RDBMS, Arc Features Databases: Distributed Hash-table, Key-Value Storage Model, Mo Language, Document Storage Model, Graph Models, Lambda Architecture, D Design and Provision Compute Resources, Storage Streaming Units, Configurati for Latency and Throughput, Output Visualization	ngoDB Quer ata Ingestior
BIG DATA STORAGE MODELS	(08 Hours
Cassandra data Model, Cassandra Examples, Cassandra Clients, Hadoop Integrati Types and File Formats, HiveQL Data Definition, HiveQL Data Manipulation, HiveQL Applications on Big Data Using Pig and Hive, Data Processing Operators in Pig, Fu of ZooKeeper, K-Means Clustering, Decision Trees, Random Forests, Recommend Spark, Higher Level Declarative Programming, Network Structure, Computing Gra	QL Queries, Indamentals ers, Table in
HBase, Data Model and Implementations, HBase Clients, HBase Examples, Praxis	
BIG DATA ANALYSIS WITH HBASE, SPARK, HIVE and PIG	(08 Hours
Hadoop Distributed File System, MapReduce, HDFS Concepts: Java Interface, Dat Hadoop I/O, Data integrity, Compression, Serialization, Avro, File-based Data Stru Mahout	•

B.Tech. Artificial Intelligence

3.	Practicals
1	Working with various functions of Hadoop MapReduce.
2	Develop a MapReduce program to calculate the frequency of a given word in agiven file.
3	Working with pySpark and RDDs.
4	Develop a Java application to find the maximum temperature using Spark
5	Regression and classification in Spark.
6	Data analysis with PCA in Spark.
7	Write queries to sort and aggregate the data in a table using HiveQL.
8	Develop a program to calculate the maximum recorded temperature by yearwise for the weather
	dataset in Pig Latin
9	Hands-on with MLlib and SparkSQL.
10	Use cases and implementation for Big data management and large scale machine learning
	algorithms.

4.	Books Recommended
1.	Tom White, "HADOOP: The definitive Guide", O Reilly 2012
2.	Michael Minelli, Michele Chambers, Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses", Wiley.
3.	Alberto Cairo, "The Truthful Art: Data, Charts, and Maps for Communication" 1/E, Berkeley, California: New Riders, 2016, ISBN: 9780321934079
4.	Sandy Ryza, Uri Laserson, Sean Owen, Josh Wills, "Advanced Analytics with Spark", O'Reilly.
5.	Jure Leskovec, Stanford Univ. Anand Rajaraman, Milliway Labs, Jeffrey D. Ullman, "Mining of Massive Datasets", Cambridge University Press

B.Tech IV (AI) Semester – VII INTELLIGENT MULTIAGENT AND EXPERT SYSTEMS		L	Т	P	Credit
Al401	Scheme	3	0	2	04

_	Course Outcomes (COs): e end of the course, students will be able to
CO1	understand the fundamentals of multi-agent systems: Grasp the core concepts, architectures, and challenges of multi-agent systems.
CO2	design and implement multi-agent systems: Apply techniques for designing, implementing, and analyzing multi-agent systems.
CO3	apply knowledge representation and reasoning techniques: Utilize knowledge representation languages and reasoning algorithms for building intelligent agents.
CO4	develop expert systems: Design and implement expert systems using various knowledge representation and reasoning techniques.
CO5	evaluate and analyze intelligent systems: Critically evaluate the performance and limitations of intelligent systems, including multi-agent and expert systems.

2.	<u>Syllabus</u>	
	Introduction to Artificial Intelligence and Multi-Agent Systems	(06 Hours)
	Introduction to Artificial Intelligence: What is AI, History and Milestones, Multi-Agent Sys	tems: Definition
	and characteristics, Types of agents: reactive, deliberative, hybrid, Agent architectur	res: BDI, SOAR,
	Challenges and limitations	
	Knowledge Representation and Reasoning	(08 Hours)
	Knowledge Representation Languages: Propositional and first-order logic, Semantic	networks and
	ontologies, Frame-based representations, Reasoning Techniques: Inference rules - Modus	Ponens, Modus
	Tollens, Forward and backward chaining, Uncertainty reasoning: Bayesian networks, fuzzy	logic, Constraint
	satisfaction problems	
	Multi-Agent Coordination and Negotiation	(07 Hours)

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

Coordination Mechanisms: Centralized and decentralized coordination, Task allocation	and scheduling,
Negotiation and bargaining strategies, Communication Protocols, Message passing and	shared memory,
Cooperation and Competition	
Learning in Multi-Agent Systems	(06 Hours)
Reinforcement Learning: Single-agent reinforcement learning, Multi-agent reinforce	ement learning,
Machine Learning Techniques: Supervised learning, Unsupervised learning, Semi-supervised learning, Semi-supervised learning, Semi-supervised learning, Unsupervised learning, Semi-supervised learning, Unsupervised learning, Semi-supervised learning, Unsupervised learning, Semi-supervised learning, Unsupervised learning,	ervised learning,
Learning from Human Behavior: Imitation learning, Apprenticeship learning	
Expert Systems	(10 Hours)
Expert System Architecture: Knowledge base, Inference engine, User interface, Exp	lanation facility
Knowledge Acquisition Techniques: Knowledge elicitation, Machine learning for knowledge	edge acquisition,
Expert System Applications: Medical diagnosis, Financial analysis	
Ethical and Social Implications of Multi-Agent and Expert Systems	(08 Hours)
Ethical Considerations: Bias and fairness, Privacy and security, Accountability and transpare	ncy, Social
Impact: Increase in Productivity, Impact on Jobs, Impact on Policy Design	
Practicals will be based on the coverage of the above topics separately.	(30 Hours)
(Total Contact Time: 45 Hours + 30 H	

3. Practicals:

- 1. Introduction to Python for AI: Basic Python Programming Constructs, Numpy, Scipy, Pandas, Matplotlib, Seaborn for Data Processing and Visualization
- 2. Implementing simple rule-based expert system
- 3. Implementing forward and backward chaining algorithms
- 4. Building a Semantic Network with Knowledge Representation and Inference Rules
- 5. Designing a Simple Multi-Agent System using a simulation environment (like MASON, NetLogo)
- 6. Implementing Negotiation Strategies using a negotiation protocol (e.g., FIPA-ACL) to simulate agent negotiation
- 7. Building a Medical Diagnosis Expert System using a knowledge-based system to diagnose diseases based on symptoms and uncertainty reasoning techniques
- 8. Developing a Financial Advisor Expert System

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

- 9. Reinforcement Learning for Multi-Agent Systems to learn optimal policies through interaction with the environment
- 10. Machine Learning for Agent Behavior to learn agent behaviors from data
- 11. Ethical AI Design and Development, Analyzing real-world AI systems for potential biases and harms

4. Books Recommended:

- 1. Russell, S., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach. Pearson.
- 2. Wooldridge, M. J. (2009). An Introduction to MultiAgent Systems. John Wiley & Sons.
- 3. Giarratano, J., & Riley, G. (2021). Expert Systems: Principles and Programming. Cengage Learning.
- 4. Gerhard Welss (1999). Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence
- 5. Victor Dibia (2024). Multi-Agent Systems with AutoGen

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. IV (AI) Semester – VII PROBABILISTIC GRAPHICAL MODELS		L	T	Р	Credit
	Scheme	3	0	2	04

_	Course Outcomes (COs): e end of the course, students will be able to
CO1	Understand the fundamental concepts of Probability Theory and different distributions.
CO2	Understand the concepts and workings of undirected, directed graphical models, and factor graphs.
CO3	Apply different inference techniques in graphical models.
CO4	Understand and estimate the parameters in graphical models; understand the concepts of structured learning.
CO5	Design and develop graphical models for different tasks.

2.	<u>Syllabus</u>	
	Introduction	(08 Hours)
	Fundamentals of Probability Theory - Views of Probability, Random Variables and Join	nt Distributions,
	Conditional Probability, Conditional Independence, Expectation and Variance, Probability	/ Distributions -
	Conjugate Priors, Introduction to Exponential Family; Fundamentals of Graph Theory -	Paths, Cliques,
	Subgraphs, Cycles and Loops.	
	Undirected and Directed Graphical Models	(09 Hours)
	Introduction - Directed Models (Bayesian Network), Undirected Models (Markov Random	Fields), Dynamic
	Models (Hidden Markov Model & Kalman Filters)	
	Factor Graphs	(08 Hours)
	Conditional Independence (Bayes Ball Theorem and D-separation), Markov Blanke	t, Factorization
	(Hammersley-Clifford Theorem), Equivalence (I-Maps & Perfect Maps); Factor Graphs -	Representation,
	Relation to Bayesian Network and Markov Random Field.	
	Inference in Graphical Models	(08 Hours)

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat

Department of Artificial Intelligence B.Tech. Artificial Intelligence

	Exact Inference - Variable Elimination, Elimination Orderings, Relation to Dynamic Programming, De with Evidence, Forward-Backward Algorithm, Viterbi Algorithm; Junction Tree Algorithm; Belief Propag (Sum Product); Approximate Inference - Variational Methods (Mean Field, Kikuchi & Bethe Approxima Expectation Propagation, Gaussian Belief Propagation; MAP Inference - Max-Product, Graph Cuts, Sam	gation ition),
ŀ	- Markov Chain Monte Carlo, Metropolis Hastings, Gibbs (Collapsing & Blocking), Particle filtering. Learning in Graphical Models (08 H	lours)
	Parameter Estimation - Expectation Maximization, Maximum Likelihood Estimation, Maximum Ent Pseudolikelihood, Bayesian Estimation, Conditional Likelihood, Structured Prediction; Learning Approximate Inference; Learning with Latent Variables; Structure Learning, Structure Search, L1 priors.	with
	Use Cases of Probabilistic Graphical Models (04 H	lours)
	Image Segmentation, Sequence Labeling Tasks in NLP, Audio Processing using Hidden Markov Mo Markov Fields, and Conditional Random Fields	odels,
	Practicals will be based on the coverage of the above topics separately. (30 H	lours)
	Frameworks: Python, Numpy, scipy, PyCrfsuite, pgmpy, hmmlearn, pykov	
(Total Contact Time: 45 Hours + 30 Hours		

3. Practicals:
1. Introduction to Probability Theory
2. Introduction to Directed and Undirected Graphical Models
3. Introduction to Factor Graphs
4. Exact and Approximate Inference using Graphical Models
5. Gaussian Belief Propagation
6. Parameter Estimation of Graphical Models
7. Maximum Entropy, Structured Predictions, Maximum Entropy Markov Model
8. Sequence Labeling Tasks in different domains

4. Books Recommended:

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

- 1. Probabilistic Graphical Models: Principles and Techniques by Daphne Koller and Nir Friedman. MIT Press.
- 2. Modeling and Reasoning with Bayesian networks by Adnan Darwiche.
- 3. Bayesian Reasoning and Machine Learning by David Barber.
- 4. Graphical models, exponential families, and variational inference by Martin J. Wainwright and Michael I. Jordan.
- 5. Machine learning: a probabilistic perspective by Kevin Murphy, MIT Press

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. IV (AI) Semester – VII System Software		L	T	Р	Credit
Al455	Scheme	3	0	2	04

1.	Course Outcomes (COs): At the end of the course, students will be able to
CO1	Understand systems software components, finite automata, regular expression and context free grammar.
CO2	Apply the knowledge of assembler and macro processors to convert assembly language into machine code.
CO3	Analyze working phases of Compiler, various parsing techniques, semantic analysis, Error handling, code generation and code optimization techniques to undertake meaningful language translation.
CO4	Evaluate Linkers, Loaders, interpreters and debugging methods to manages system memory and provide a portable runtime environment.
CO5	Create a language translator application and mimic a simple compiler.

2.	Syllabus	
	INTRODUCTION	(05 Hours)
	Introduction to System Software, Utility Software, Systems Programming, Rec Software Development, Programming Languages and Language Processors, Data Language Processing.	
	ASSEMBLERS	(06 Hours)
	Overview of the Assembly Process, Cross Assembler, Micro Assembler, Meta Ass	embler, Single
	Pass Assembler, Two Pass Assembler, Design of Operation Code Table, Symbol	Table, Literal
	Table, Advanced Assembly Process.	
	MACRO PROCESSORS	(06 Hours)
	Introduction of Macros, Macro Processor Design, Forward Reference, Backward F	Reference,
	Positional Parameters, Keyword Parameters, Conditional Assembly, Macro Calls w	ithin Macros,
	Implementation of Macros Within Assembler. Designing Macro Name Table, Mac	ro Definition
	Table, Kew Word Parameter Table, Actual Parameter Table, Expansion Time Varria	able Storage.
	COMPILERS	(16 Hours)

Phases of Compiler, Analysis-Synthesis Model of Compilation, Interface with Ir	put, Parser and
Symbol Table, Token, Lexeme, Patterns and Error Reporting in Lexical Analysi	s, Programming
Language Grammars, Classification of Grammar, Ambiguity in Grammatical Sp	ecification, Top
Down Parsing, Recursive Descent Parsing, Transformation on The Grammars, Pro	edictive Parsing,
Bottom Up Parsing, Operator Precedence Parsing, LR Parsers, Language Processo	or Development
Tools – LEX & YACC, Semantic Gap, Binding and Binding Times, Memory Allocati	on, Compilation
of Expression, Intermediate Representations, Basic Code Optimization.	
LINKERS AND LOADERS	(06 Hours)
Design of a Linker, Program Relocation, Linking of Overlay Structured Prog Linking, General Loader Schemes, Absolute Loader, Relocating Loader, D Bootstrap Loader, Linking Loader, other Loading Schemes, Linkers v/s Loaders.	•
INTERPRETERS & DEBUGGERS	(06 Hours)
Overview of Interpretation and Debugging Process, Types of Errors, Classificatio	n of Debuggers,
Dynamic/Interactive Debugger, The Java Language Environment, Java Virtua	I Machine and
Recent Developments.	
Practicals will be based on the coverage of the above topics.	(30 Hours)
(Total Contact Time: 45 Hours + 30 Ho	urs = 75 Hours)

3.	Practicals
1	Study, install and setup various system software tools.
2	Implementation of single pass and two pass assembler.
3	Design and implement scanner using lexical analyzer (LEX) tool.
4	Design and implement parser using YACC tools.
5	Design and configure a compiler application using modern tools and softwares.
6	Implementation of different stages of compiler.
7	Implementation of interpreter and debugger.
8	Implementation of optimization based compiler design.

4.	Books Recommended
1.	D. M. Dhamdhere, "Systems Programming", 6/E, McGraw Hill, 2014.
2.	Leland L. Beck, "System Software - An Introduction to System Programming", 3/E, Pearson Education, 2002.
3.	John Donovan, "Systems programming", 1/E, McGraw Hill, 2017.
4.	Santanu Chattopadhyay, "System Software" 1/E, Prentice-Hall India, 2007.
5.	A. V. Aho, R. Sethi & J D. Ullman, "Compilers-Principles, Techniques and Tools", 2/E, Pearson India, 2013.

B. Tech. IV (AI) Semester – VII Internet of Things and Edge Computing		L	Т	Р	Credit
Al457	Scheme	3	0	2	04

1.	Course Outcomes (COs): At the end of the course, students will be able to
CO1	Identify the hardware and software components, challenges of Internet of Things
CO2	Assess different Internet of Things technologies, architectures resource management and their applications.
CO3	Understand fundamentals of Edge computing and its applications in low latency and critical real-time computing scenarios
CO4	Evaluating different techniques for distributed data analytics over edge devices like edge data centre.
CO5	Analyze the performance and issues of the applications developed using edge architecture and platforms.

2.	Syllabus			
	INTRODUCTION	(03 Hours)		
	Definition and Characteristics of Internet of Things (IoT) - Challenges and Issues - P of IoT - Logical Design of IoT - IoT Functional Blocks.	hysical Design		
	IOT COMMUNICATION ARCHITECTURES AND PROTOCOLS	(05 Hours)		
	Control Units – Communication modules – Bluetooth – Zigbee – WiFi – GPS - IoT Protocols (IPv6, 6LoWPAN, RPL, CoAP) – MQTT - Wired Communication - Power Sources			
	TECHNOLOGIES AND RESOURCE MANAGEMENT IN IOT	(12 Hours)		
	Four pillars of IoT paradigm: RFID, Wireless Sensor Networks, Supervisory Co. Acquisition (SCADA) - M2M - IoT Enabling Technologies: BigData Analytics, Clou Embedded Systems. Programming the Microcontroller for IoT. Scalabil Configuration Protocol, Open vSwitch Database Management Protocol - Routing a Collection Tree, LOADng.	id Computing, ity: Network		
	INTRODUCTION TO EDGE COMPUTING	(05 Hours)		

	Introduction to Cloud and its limitations to support low latency and RTT. From Computing: Waves of innovation. Introduction to Edge Computing Architection Computing to support User Applications (5G-Slicing, self-driving cars and more distributed systems in edge computing such as time ordering and clock syndistributed snapshot, etc.	ctures. Edge) Concepts of		
	MANAGEMENT OF EDGE APPLICATIONS AND SERVICES	(10 Hours)		
	Introduction to Edge Data Center, Lightweight Edge Clouds and its services provide service providers. Introduction to docker container and Kubernetes in edge compof edge storage systems like key-value stores	•		
	EDGE PLATFORMS AND USE CASES	(10 Hours)		
Introduction to MQTT and Kafka for end-to-end edge pipeline. Edge analytics topology M2M and WSN network (MQTT), Use cases of machine learning for edge sensor predictive maintenance, image classifier and self-driving cars. Deep Learning inference at the edge to support latency-based application				
	Practicals will be based on the coverage of the above topics.	(30 Hours)		
	(Total Contact Time: 45 Hours + 30 Hou	rs = 75 Hours)		
3.	Practicals			
1	To study IoT Development Kit and Development Environment.			
2	Development of Internet Controlled LEDs.			
3	System to create Temperature Logger.			
4	Development of Home Automation System.			
5	Use of Soil Moisture Sensor in agriculture-based applications.			
6	Use of Light Color Control for planning and simulating traffic.			
7	Develop a Home Security System.			
8	Use of Parking Sensor, Water Level Control, Street Light Control for different app	lications		

4.	Books Recommended
1.	The Internet of Things: Enabling Technologies, Platforms, and Use Cases", by Pethuru Raj and
	Anupama C. Raman (CRC Press)

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Curriculum SVNIT Surat

2.	S. Misra, A. Mukherjee, and A. Roy, 2020. Introduction to IoT. Cambridge University Press.
3.	Simone Cirani, Gianluigi Ferrari, Marco Picone, Luca Veltri. Internet of Things: Architectures, Protocols and Standards, 2019, 1 st Edition, Wiley Publications, USA.
4.	Fog and Edge Computing: Principles and Paradigms", Rajkumar Buyya (Editor), Satish Narayana Srirama (Editor), Wiley, 2019
5.	Cloud and Distributed Computing: Algorithms and Systems", Rajiv Misra, Yashwant Patel, Wiley 2020.

B. Tech. IV (AI) Semester – VII INFORMATION RETRIEVAL	L	Т	Р	Credit
Al459 Scheme	3	0	2	04

1. (Course Outcomes (COs):			
At the	At the end of the course, students will be able to			
CO1	understand the fundamentals of Information Retrieval (IR) systems			
CO2	apply text processing and indexing techniques for efficient retrieval			
CO3	analyze ranking models and evaluation metrics in IR			
CO4	implement machine learning techniques for IR tasks			
CO5	explore advanced and next-generation IR techniques			

2.	Syllabus		
	Introduction	(06 Hours)	
	Overview of Information Retrieval Systems: Definition and objectives of IR systems, Function	onal overview of	
	IR systems, Relationship with Database Management Systems, Digital Libraries, and Data W	arehouses.	
	Fundamentals of Information Retrieval: History and evolution of IR, Components of an IR sy	stem, Key issues	
	in IR.		
	Text Processing and Indexing	(07 Hours)	
	Basic Text Processing: Tokenization, Stopwords, Stemming, Lemmatization, Zipf's law, Heap's law, E		
	Detection and Correction: Hamming distance, Longest Common Subsequence, Levenshtein edit distan		
	Indexing and Data Structures: Soundex algorithm, Inverted File Structure, N-Gram Data Structures.		
	Ranking Models	(06 Hours)	
	Ranking Models: Vector Space Model, TF-IDF, Probabilistic Retrieval Model, Generative Model, Probabilis		
	Ranking Principle, Binary Independence Model, Evaluation Measures:		
	Evaluation Metrics and Relevance Judgment in Information Retrieval	(05 Hours)	

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Precision, Recall, F-measure, Mean Reciprocal Rank (MRR), Mean Average Precision (Noscounted Cumulative Gain (NDCG), Test Collection and Relevance Judgments: Designing Relevance judgments.	- ·
Unsupervised Learning Approaches in Information Retrieval	(06 Hours)
Retrieval using Unsupervised Techniques: Word embeddings, Clustering-based retrieval,	Topic modeling),
Dimensionality reduction techniques, Anomaly detection in retrieval.	
Supervised Learning Approaches in Information Retrieval	(06 Hours)
Learning to Rank for retrieval, Classification-based retrieval, Neural networks for ranking	ng, Deep learning
models (e.g., BERT, Transformer-based retrieval), Feature engineering for IR, Ensen	nble methods in
retrieval.	
Next-Generation Information Retrieval	(09 Hours)
Neural Information Retrieval , Multimodal Information Retrieval, Cross-modal retrieval, Vis	 sion-language
models (CLIP), Chatbot-based search, Real-Time and Streaming IR	
(Total Contact Time: 45 Hours + 30	Hours = 75Hours)

3. Practicals:

- 1. Implement tokenization, stopword removal, stemming, and lemmatization on a given text dataset.
- 2. Analyze word frequency distribution using Zipf's Law and Heap's Law on a text corpus.
- 3. Implement spelling correction using Hamming distance, Longest Common Subsequence, and Levenshtein edit distance.
- 4. Develop an inverted index and implement Boolean retrieval operations (AND, OR, NOT).
- 5. Compute Term Frequency-Inverse Document Frequency (TF-IDF) scores and rank documents based on user queries.
- 6. Implement the Vector Space Model to compute cosine similarity between queries and documents.
- 7. Apply clustering techniques (K-Means, Hierarchical) on a text dataset and retrieve relevant documents.
- 8. Train a supervised learning model for ranking documents using Learning to Rank techniques.
- 9. Implement document ranking using a pre-trained BERT model for text similarity and retrieval.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

10. II	R pro	iect	deve	lopment
--------	-------	------	------	---------

4. Books Recommended:

- 1. Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze. Introduction to Information Retrieval, Cambridge University Press, 2008. ISBN-13: 978-0521865715.
- 2. Stefan Büttcher, Charles L. A. Clarke, Gordon V. Cormack. Information Retrieval: Implementing and Evaluating Search Engines, MIT Press, ISBN-13: 978-0262026512.
- 3. Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman. Mining of Massive Datasets, Cambridge University Press, 2011. ISBN: 978-1107077232.
- 4. Information Storage & Retrieval By Robert Korfhage John Wiley & Sons.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B. Tech. IV (AI) Semester – VII COMPUTATIONAL INTELLIGENCE	L	Т	Р	Credit
Al461 Schem	3	0	2	04

1. (1. Course Outcomes (COs):				
At th	At the end of the course, students will be able to				
CO1	Able to understand different computational techniques				
CO2	Able to apply different computational techniques in different domains				
CO3	Able to analyze the performance of different computational				
CO4	Able to design hybrid computational intelligence models using neural networks, fuzzy logic, and evolutionary algorithms.				
CO5	Able to evaluate uncertainty-handling techniques in computational intelligence and their impact on decision-making systems.				

2.	<u>Syllabus</u>			
	INTRODUCTION	(06 Hours)		
	Overview, Basics of Problem solving as an Artificial Intelligence problem, Computational Intelligence Applications	elligence,		
	INTELLIGENT SEARCH TECHNIQUES, KNOWLEDGE REPRESENTATION	(08 Hours)		
	Artificial neural networks: feed-forward, recurrent and multi-layer architectures; Supervised	and		
	unsupervised learning; Characteristics: adaptability, fault tolerance, generalization			
	COMPUTATIONAL INTELLIGENCE METHODOLOGIES LEARNING, ADAPTATION	(08 Hours)		
	limitations of neuro-computing. Different learning algorithms: Perceptron, Backpropagation	, Hopefield,		
	Kohenen networks.			
	UNCERTAINTY TREATMENT	(08 Hours)		
	Fuzzy sets - Basic Definition; Fuzzy-set theoretic Operations – Member Function Formulation	n and		
	Parameterization – Fuzzy Rules and Fuzzy Reasoning, Fuzzy If-Then Rules, Hybrid approache	s (neural		
	networks, fuzzy logic, genetic algorithms etc.)			
	HYBRID COMPUTATIONAL LEARNING	(05 Hours)		
	Fuzzy Neural Networks and Evolutionary Algorithms			
	DETAILED DISCUSSION FROM EXAMPLE DOMAINS	(06 Hours)		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)			
Practicals will be based on the coverage of the above topics separately	(30 Hours)		
of autonomous decision-making			
Bias and fairness in AI algorithms, Ethical concerns in neural networks and fuzzy systems, Societal impacts			
ETHICAL AND SOCIETAL ASPECTS OF COMPUTATIONAL INTELLIGENCE	(04 Hours)		
Industry, Language, Medicine, Verification, Vision, Knowledge Based Systems etc.			

3. Practicals:	
1. Al Search Techniques in Prolog	
2. Practical on Multi-Layer Perceptron (MLP) with Backpropagation	
3. Societal Impacts of Autonomous Decision-Making	
4. Use of SHAP/LIME to interpret neural network decisions	
5. Cluster high-dimensional data using an unsupervised learning approach	
6. Implement a Hopfield network for character recognition	
7. Implement a fuzzy inference system for automatic car speed control	
8. Implement a GA-based weight optimization for a neural network	
9. Mini Project on real-world applications using above computational intelligence	

4. Books Recommended:

- 1. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall Series in AI, 1995.
- 2. E. Rich and K. Knight, Artificial Intelligence, Tata McGraw Hill, New Delhi 1992.
- 3. J.S.R.J ang, C.T. Sun and E. Mizutani, "Neuro-Fuzzy and Soft Computing", Prentice Hall of India and Pearson Education, 2004.
- 4. Konar A., "Computational Intelligence: Principles, Techniques and Applications", Springer Verlag, 2005
- 5. S. Rajasekaran and G.A.V. Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", Prentice Hall of India, 2003. 6. R. Eberhart, P. Simpson and R. Dobbins, "Computational Intelligence PC Tools", AP Professional, Boston, 1996.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. IV (AI) Semester – VII Data Mining		L	Т	Р	Credit
Al463 Scher	e	3	0	2	04

	1. Course Outcomes (COs): At the end of the course, students will be able to				
CO1	Explain key data mining concepts, techniques, and preprocessing methods.				
CO2	Apply association rule mining to discover patterns in large datasets.				
CO3	Develop and evaluate classification and prediction models.				
CO4	Implement clustering and outlier detection techniques.				
CO5	Utilize data mining for complex applications, including web, text, and big data.				

2.	Syllabus		
	Unit-1: Introduction to Data Mining and Data Preprocessing	(10 Hours)	
	Data Mining, Stages of the Data Mining Process, Data Mining Knowledge Representation, Knowledge		
	Discovery in Databases (KDD), Introduction to Data Mining Tasks: Classification, Cluster	ing, Association	
	Rule Mining, Data Preprocessing Techniques: Handling Missing Values, Noisy Data and	d Outliers, Data	
	Warehouse: Basic Concept, Online Transaction Processing (OLTP), Online Analytical Processing (OLAP).		
	Unit 2: Mining Frequent Patterns, Associations, and Correlations	(05 Hours)	
	Basic Concept: Market Basket Analysis, Frequent and Closed Item sets, Frequent Itemset Mining Method		
	Apriori Algorithm, Generating Association Rules from Frequent Item sets, Correlation Analysis, A Pattern		
	Growth Approach for Mining Frequent Item sets, Pattern Mining in Multilevel, Multidimen	nsional Space.	
	Unit-3: Classification and Prediction	(10 Hours)	
	Define Classification: General Approach, Classification Methods: Decision Tree Induction using ID3, C4.5, and CART, Naïve Bayes Classification, Classification Advanced Methods: Support Vector Machines, k-Nearest-Neighbor Classifiers, Techniques to Improve Classification Accuracy: Ensemble learning (bagging, boosting, random forests), Model Evaluation: Metrics for Evaluating Classifier Performance, Cross-Validation.		
	Unit-4: Cluster Analysis	(10 Hours)	
	Overview and Requirements of Cluster Analysis, Partitioning Methods: k-Means, k-Medoids, Hierarchical		
	Methods: Agglomerative versus Divisive Hierarchical Clustering, Density-Based Methods: DBSCAN:		
	Density-Based Clustering Based on Connected Regions with High Density, Grid-Based Methods: STING:		
	STatistical INformation Grid, Evaluation of Clustering: Assessing Clustering Tendency, Determining the Number of Clusters and Measuring Clustering Quality.		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Unit-5: Data Mining Trends and Research Edges	(10 Hours)
Mining Complex Data Types: Mining Sequence Data: Time-Series, Symbolic Sequences	, and Biological
Sequences, Mining Graphs and Networks, Web Mining and Text Mining, Data Mining Applications, Dat	
Mining and Recommender Systems, Privacy, Security, and Social Impacts of Data Mining.	
(Total Contact Time: 45 Hours + 30 Hours = 75 Hours	

3. Practicals:

- 1. Data Preprocessing: Clean, handle missing values, normalize, and scale data using Pandas and Scikit-learn.
- 2. **Association Rule Mining:** Implement Apriori and FP-Growth to find frequent itemsets and association rules.
- 3. **Decision Tree Classification:** Build and visualize a decision tree using Scikit-learn.
- 4. Naïve Bayes Classification: Apply Naïve Bayes for spam detection or sentiment analysis.
- 5. **k-NN Classification:** Train and evaluate a k-NN model on a dataset.
- 6. **SVM Classification:** Implement SVM and visualize decision boundaries.
- 7. Clustering (k-Means & DBSCAN): Perform clustering and compare results.
- 8. **Outlier Detection:** Detect outliers using statistical and density-based methods.
- 9. **Text Mining & Sentiment Analysis:** Process text data and classify sentiments.
- 10. Big Data Mining with PySpark: Use PySpark for classification or clustering on large datasets.

4. Books Recommended:

- 1. Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann. ISBN: 978-0123814791.
- 2. Tan, P-N., Steinbach, M., & Kumar, V. (2018). Introduction to Data Mining (2nd ed.). Pearson. ISBN: 978-0133128901.
- 3. Rajaraman, A., & Ullman, J. D. (2011). Mining of Massive Datasets (2nd ed.). Cambridge University Press. ISBN: 978-1107077232.
- 4. Gupta, G. K. (2006). Introduction to Data Mining with Case Studies. PHI Learning. ISBN: 978-8120330982.
- 5. Mohammed J. Zaki & Wagner Meira Jr. (2020). Data Mining and Machine Learning: Fundamental Concepts and Algorithms (2nd ed.). Cambridge University Press. ISBN: 978-1108473989.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. IV (AI) Semester – VII System Analysis and Simulation	L	Т	Р	Credit
Al 465 Scheme	3	0	2	04

_	Course Outcomes (COs): At the end of the course, students will be able to				
CO1	Understand Discrete Event Simulation and Modeling: Gain knowledge of key elements and principles of discrete event simulation and the modeling paradigm.				
CO2	Analyze and Apply Simulation Results: Interpret simulation models and utilize the results to address real-world challenges effectively.				
CO3	Perform System Analysis: Identify and evaluate system requirements using various system analysis techniques.				
CO4	Utilize Simulation Software: Apply computer simulation tools to solve problems and analyze system behavior.				
CO5	Develop and Execute System Models: Acquire skills to construct, implement, and execute goal-oriented system models using simulation software.				

2.	Syllabus		
	Unit 1: Introduction to System Development	(09 Hours)	
	System development concepts, Business and organizational context, Information systems' function		
	business, Information system stakeholders, Types of information systems, and the SDLC (system development life cycle).		
	Unit 2: Methods for Project Management and Systems Development	(09 Hourse)	
	Software development tools, quality assurance, project planning, scheduling, risk management, cos estimation, and system development methodologies (waterfall, agile, spiral, RAD), as well as system modeling techniques (DFD, UML).		
	Unit 3: Activities for System Analysis	(08 Hours)	
	Use case modeling, functional and non-functional requirements, feasibility analysis, requirement validation, and requirement elicitation methods (interviews, surveys, and prototyping).		
	Unit 4: Fundamentals of System Architecture	(09 Hours)	
	Human-computer interaction (HCI) elements, network design considerations, system architecture hardware and software choices, user interface (UI) and user experience (UX) principles, system security and access control systems.		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Unit 5: Concepts of Advanced System Design (eight hours)	(10 Hours)	
UML design models (class, sequence, and activity diagrams), database design and management, data		
security and integrity, database modeling techniques, system implementation and testing strategies, and		
object-oriented design principles (encapsulation, inheritance, and polymorphism).		
(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)		

3. Practicals:

- 1. **Requirement Gathering:** Identify and document system requirements for a given problem statement. *(Tool: Microsoft Word, Google Docs)*
- 2. **Use Case Diagram:** Create a use case diagram for a library management or online shopping system. *(Tool: StarUML, Draw.io, Lucidchart)*
- 3. **Data Flow Diagram (DFD):** Design a Level 0 and Level 1 DFD for a banking or hospital management system. (*Tool: Microsoft Visio, Draw.io, Lucidchart*)
- 4. **ER Diagram:** Develop an Entity-Relationship (ER) model for a student management system. *(Tool: MySQL Workbench, Lucidchart, Draw.io)*
- 5. **System Architecture Diagram:** Design the architecture for an e-commerce system, showing hardware, software, and network components. (*Tool: Microsoft Visio, EdrawMax, Draw.io*)
- 6. **User Interface (UI) Prototype:** Create wireframes for a mobile or web-based application. *(Tool: Figma, Balsamiq, Adobe XD)*
- 7. **Class Diagram:** Develop a class diagram for an ATM or online ticket booking system. *(Tool: StarUML, Visual Paradigm, Lucidchart)*
- 8. **Sequence Diagram:** Design a sequence diagram for a user login and transaction process. *(Tool: StarUML, Draw.io, Lucidchart)*
- 9. **Database Table Creation:** Create and execute SQL queries for a simple database schema. *(Tool: MySQL, PostgreSQL, Microsoft SQL Server)*
- 10. **System Testing Basics:** Write and execute simple test cases for login functionality. *(Tool: Selenium, JUnit, Postman for API testing)*

4. Books Recommended:

- 1. J. W. Satzinger, R. B. Jackson and S. D. Burd, "Systems Analysis and Design in a Changing World", 6th ed. Boston, USA: Thomson Course Technology, 2012.
- 2. Averill M. Law, "Simulation modelling and analysis (SIE)", 4th Edition, Tata McGraw Hill India, 2007.
- 3. David Cloud, Larry Rainey, "Applied Modelling and Simulation", Tata McGraw Hill, India.
- 4. Gabriel A. Wainer, "Discrete-event modelling and simulation: a practitioner's approach", 1st Edition, CRC Press, 2009.
- 5. Bernard P. Zeigler, Herbert Praehofer, Tag Gon Kim, "Theory of modelling and simulation: integrating discrete event and continuous complex dynamic systems", 2nd Edition, Academic Press, 2000.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)